Math 116 Calculus - Homework \# 3-Solutions

Q-1) Consider the space curve C given by the parametrization:
$x(t)=\frac{t^{2}}{2}, y(t)=\frac{2 \sqrt{2} t^{3 / 2}}{3}, z(t)=t, 0 \leq t \leq 2$.
(i) Find the length of the curve C.
(ii) Find the arc length parametrization of C.

Solution: The length of the curve from 0 to t is given by the integral

$$
s(t)=\int_{0}^{t}|v(\tau)| d \tau=\int_{0}^{t}(\tau+1) d \tau=\frac{1}{2} t^{2}+t
$$

Hence the length of the curve is $s(2)=4$.
To find the arc length parametrization we must solve $s=\frac{1}{2} t^{2}+t$ for t. This gives $t=$ $-1 \pm \sqrt{1+2 s}$. To decide on the sign we take into account that $s(0)=0$ and $s(2)=4$. This gives $t=-1+\sqrt{1+2 s}$. Putting this into the above parametrization of the curve gives the arc length parametrization:
$x(s)=\frac{(-1+\sqrt{1+2 s})^{2}}{2}, y(s)=\frac{2 \sqrt{2}(-1+\sqrt{1+2 s})^{3 / 2}}{3}, z(s)=(-1+\sqrt{1+2 s}), 0 \leq s \leq 4$.

Q-2) Evaluate the line integral $\int_{C} f d s$ where C is given by the parametrization $x(t)=1$, $y(t)=2 \cos t, z(t)=2 \sin t, 0 \leq t \leq \pi$, and $f=f(x, y, z)=(x-1)\left(y^{3} \cosh z\right)+\left(y^{2}+\right.$ $\left.z^{2}-4\right)\left(x^{3} \sinh z\right)+y^{2}$.

Solution:

$$
\int_{C} f d s=\int_{0}^{\pi}\left(\left.f\right|_{C}\right)|v(t)| d t=8 \int_{0}^{\pi} \cos ^{2} t d t=4 \pi
$$

Q-3) Find the work done by the gradient of $x^{2}+y^{2}+z^{2}$ along the path $r(t)=\left(t, t^{2}, t^{4}\right)$, $0 \leq t \leq 1$.

Solution: Let $f=x^{2}+y^{2}+z^{2}$, and call the curve C. Then $\left.\nabla f\right|_{C}=\left(2 t, 2 t^{2}, 2 t^{4}\right)$, and $\nabla f \cdot d r=\left(2 t+4 t^{3}+8 t^{7}\right) d t$. Finally we have

$$
\text { Work }=\int_{C} \nabla f \cdot d r=\int_{0}^{1}\left(2 t+4 t^{3}+8 t^{7}\right) d t=3
$$

Q-4) Find the flux of the position vector across the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
Solution: The position vector is $F=(M, N)=(x, y)$, and the given ellipse C can be parameterized as $(x(t), y(t))=(2 \cos t, 3 \sin t), 0 \leq t \leq 2 \pi$. This gives

$$
\text { Flux }=\int_{C} M d y-N d x=6 \int_{0}^{2 \pi} d t=12 \pi
$$

Q-5) Consider the vector field $F=\left(\frac{x}{x^{2}+y^{2}+z^{2}}, \frac{y}{x^{2}+y^{2}+z^{2}}, \frac{z}{x^{2}+y^{2}+z^{2}}\right)$.
(i) Show that F is conservative in the first octant.
(ii) Find a potential function for F.
(iii) Calculate the work done by F over the curve C which is parameterized as $x(t)=e^{t}$, $y(t)=t+\cos (\pi t / 2), z(t)=1+t^{2}, 0 \leq t \leq 1$.

Solution:

(i) This is straightforward to check.
(ii) It is easy to show that $f(x, y, z)=\frac{1}{2} \ln \left(x^{2}+y^{2}+z^{2}\right)+k$ where k is any constant, gives all the potential functions for F.
(iii) Since F is conservative, its path integral depends only on the end points. Let $r(t)$ be the position vector of the path C. Then we have

$$
\text { Work }=\int_{C} F \cdot d r=f(r(1))-f(r(0))=f(e, 1,2)-f(1,1,1)=\frac{1}{2} \ln \left(\frac{e^{2}+5}{3}\right) .
$$

