Math 116 Calculus - Homework \# 4 - Solutions

Q-1) Let $\mathbf{F}=\left[\frac{a x+b y}{x^{2}+y^{2}}+\alpha y\right] \mathbf{i}+\left[\frac{-b x+a y}{x^{2}+y^{2}}+\beta x\right] \mathbf{j}$ be a vector field over a region D bounded by a simple curve C. Here a, b, α and β are constants. Let the area of D be 50π and assume that D contains a disc of radius 7 centered at the origin. Find the value of b, in terms of a, α and β, so that the circulation of the vector field \mathbf{F} around C is zero.

Solution: Let $\mathbf{F}=[M, N]$. Then $N_{x}-M_{y}=\beta-\alpha$.
Let S be the circle of radius 7, centered at the origin and oriented counterclockwise. Let R be the region between C and S. Clearly the area of R is π and its boundary is $C-S$.

By Green's Theorem we have

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathbf{T} d s-\oint_{S} \mathbf{F} \cdot \mathbf{T} d s & =\oint_{C-S} \mathbf{F} \cdot \mathbf{T} d s \\
& =\iint_{R}\left(N_{x}-M_{y}\right) d x d y \\
& =\iint_{R}(\beta-\alpha) d x d y \\
& =(\beta-\alpha) \operatorname{Area}(R)=(\beta-\alpha) \pi
\end{aligned}
$$

This gives

$$
\oint_{C} \mathbf{F} \cdot \mathbf{T} d s=\oint_{S} \mathbf{F} \cdot \mathbf{T} d s+(\beta-\alpha) \pi .
$$

Using the usual parametrization $r(t)=(7 \cos \theta, 7 \sin \theta), 0 \leq \theta \leq 2 \pi$ for S, we evaluate the circulation of \mathbf{F} around S to be

$$
\oint_{S} \mathbf{F} \cdot \mathbf{T} d s=\oint_{S}(M d x+N d y)=\int_{0}^{2 \pi}\left(49 \beta \cos ^{2} \theta-49 \alpha \sin ^{2} \theta-b\right) d \theta=49 \pi(\beta-\alpha)-2 \pi b .
$$

This gives

$$
\oint_{C} \mathbf{F} \cdot \mathbf{T} d s=50 \pi(\beta-\alpha)-2 \pi b .
$$

For this circulation to be zero, we must have

$$
b=25(\beta-\alpha)
$$

Q-2) Evaluate $\iint_{S} \operatorname{curl}(F) \cdot n d \sigma$, where S is the surface $z=18-4 x^{2}-9 y^{2}$ with $z \geq 0$, oriented such that the unit normal vector points outward and F is the vector field

$$
F=\left(z \cos x^{2}+\frac{y}{9}, z^{2} \sin y+\frac{x}{3}, 4 x^{2}+9 y^{2}+z \sinh \left(x^{2}+y^{2}\right)-18\right) .
$$

Solution: We use Stokes' theorem

$$
\iint_{S} \operatorname{curl}(F) \cdot n d \sigma=\int_{C} F \cdot d \mathbf{r},
$$

where C is the boundary of S parameterized by $\mathbf{r}(t)=\left(\frac{3}{\sqrt{2}} \cos \theta, \sqrt{2} \sin \theta, 0\right), \theta \in[0,2 \pi]$.
The vector field F restricted to C takes the form $F=\left(\frac{1}{9} y, \frac{1}{3} x, 0\right)=\left(\frac{\sqrt{2}}{9} \sin \theta, \frac{1}{\sqrt{2}} \cos \theta, 0\right)$.
Then we have $F \cdot d \mathbf{r}=F \cdot\left(-\frac{3}{\sqrt{2}} \sin \theta, \sqrt{2} \cos \theta, 0\right) d \theta=\left(-\frac{1}{3} \sin ^{2} \theta+\cos ^{2} \theta\right) d \theta$. Thus we have

$$
\iint_{S} \operatorname{curl}(F) \cdot n d \sigma=\int_{C} F \cdot d \mathbf{r}=\int_{0}^{2 \pi}\left(-\frac{1}{3} \sin ^{2} \theta+\cos ^{2} \theta\right) d \theta=\frac{2}{3} \pi
$$

Q-3) Find a closed curve C with counterclockwise orientation that maximizes the value of the integral

$$
I=\oint_{C} \frac{y^{3}}{3} d x+\left(x-\frac{x^{3}}{3}\right) d y .
$$

Solution: By Green's theorem we have

$$
I=\iint_{R}\left(1-x^{2}-y^{2}\right) d A
$$

where R is the region enclosed by C. The integral is maximal over $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ which is the closed unit disk. Therefore C must be the unit circle with a counter clockwise parametrization $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.

Q-4) Use Stokes' Theorem to evaluate the integral $\int_{C} \frac{y^{2}}{2} d x+z d y+x d z$, where C is the curve of intersection of the plane $x+z=1$ and the ellipsoid $x^{2}+2 y^{2}+z^{2}=1$, oriented counterclockwise as viewed from above.

Solution: Let S be the planar region contained inside C on the plane $x+z=1$, and set $F=(M, N, P)=\left(y^{2} / 2, z, x\right)$. Then

$$
\int_{C} \frac{y^{2}}{2} d x+z d y+x d z=\int_{C} F \cdot d r
$$

and Stokes' theorem says

$$
\int_{C} F \cdot d r=\iint_{S} \nabla \times F \cdot n d \sigma
$$

where $n=(1 / \sqrt{2}, 0,1 \sqrt{2})$ is the unit normal vector of S pointing upwards to be compatible with the orientation of C.
$d \sigma$ is the area element on the surfaces S. Here we can take $f(x, y, z)=x+z-1=0$ for S. Then $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot p|} d A$, where $p=(0,0,1)$ is the unit normal vector of the projection of S onto $x y$-plane. This gives $d \sigma=\sqrt{2} d A$.

We also have

$$
\begin{aligned}
\nabla \times F \cdot n & =\left(P_{y}-N_{z}, M_{z}-P_{x}, N_{x}-M_{y}\right) \cdot n \\
& =(-1,-1,-y) \cdot\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \\
& =-\frac{1}{\sqrt{2}}(1+y)
\end{aligned}
$$

Let D be the projection of S onto $x y$-plane. We find its bounding curve by eliminating z from the equations $x+z=1$ and $x^{2}+2 y^{2}+z^{2}=1$. This gives the circle $x^{2}-x+y^{2}=0$.

Then we have

$$
\begin{aligned}
\iint_{S} \nabla \times F \cdot n d \sigma & =-\iint_{D}(1+y) d A \\
& =-\iint_{D} d A-\iint_{D} y d A \\
& =-\frac{\pi}{4}
\end{aligned}
$$

Where the first integral gives the area of the circle while the second integral is zero since the odd function y is integrated around a symmetrical region around zero.

Q-5) Compute

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

where

$$
\mathbf{F}=x z \mathbf{i}+y z \mathbf{j}+x y \mathbf{k}
$$

and $S: z=4-x^{2}-y^{2}, z \geq 1$ and \mathbf{n} points away from the origin.
a) directly, b) by Stokes' theorem

Solution-a: Let S be given by $f(x, y, z)=z+x^{2}+y^{2}-4=0$. Let D be the projection of S onto $x y$-plane. Then D is the disk $x^{2}+y^{2} \leq 3$, and the unit normal of D is $p=(0,0,1)$. Then $\nabla \times \mathbf{F}=(x-y, x-y, 0), \nabla f=(2 x, 2 y, 1)$, and

$$
\nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma=(\nabla \times \mathbf{F}) \cdot \frac{\nabla f}{|\nabla f|} \frac{|\nabla f|}{|\nabla f \cdot p|} d A=2\left(x^{2}-y^{2}\right) d A
$$

It follows that

$$
\begin{aligned}
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma & =2 \iint_{D}\left(x^{2}-y^{2}\right) d A \\
& =2 \int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} r^{3}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) d r d \theta \\
& =2 \int_{0}^{2 \pi} \cos 2 \theta \int_{0}^{\sqrt{3}} r^{3} d r d \theta \\
& =0
\end{aligned}
$$

Solution-b: By Stokes' theorem

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where C is the boundary of S and is parametrized as $\mathbf{r}(t)=(\sqrt{3} \cos t, \sqrt{3} \sin t, 1), 0 \leq t \leq 2 \pi$.
Here we have $\mathbf{F} \cdot d \mathbf{r}=0$ on C, so the given integral is zero.

Send questions and comments to sertoz@bilkent.edu.tr

