\qquad
\qquad

SECTION NUMBER:

\qquad

Math 116 Intermediate Calculus III - Make-up Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit. Without the correct section number, your grade may not be entered in SAPS.

Q-1) Find the absolute minimum and absolute maximum values of the function

$$
f(x, y)=3 x^{2}+12 x+4 y^{3}-6 y^{2}+5
$$

on $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}+4 x \leq 0\right\}$.

Solution :

First we look for the critical points in the interior of D.
$f_{x}=6 x+2=6(x+2)$ and $f_{x}=0$ for $x=-2$.
$f_{y}=12 y^{2}-12 y=12 y(y-1)$ and $f_{y}=0$ when $y=0$ or $y=1$.
Therefore, the critical points of $f(x, y)$ inside D is $(-2,0)$ and $(-2,1)$.
For the boundary of D, we use the relation $x^{2}+4 x=-y^{2}$ and reduce $f(x, y)$ to $f(y)=$ $4 y^{3}-9 y^{2}+5,-2 \leq y \leq 2$.
$f^{\prime}(y)=12 y^{2}-18 y=6 y(2 y-3)$ and $f^{\prime}(y)=0$ when $y=0$ or $y=3 / 2$.
Together with the end points $y= \pm 2, f$ has 4 critical points on $[-2,2]$.
$f(0)=5, f(3 / 2)=-7 / 4, f(2)=1$, and $f(-2)=-63$. For the critical points in the interior, we find that $f(-2,0)=-7$ and $f(-2,1)=-9$.

Hence, the absolute maximum of f is 5 and the absolute minimum of f is -63 .

Q-2) Find the volume of the region that is both inside the paraboloid $z=x^{2}+y^{2}$ and the cylindrical surface $x=2 y-y^{2}$, and from below bounded by the plane $z=0$ and from above by the plane $z=1$.

Solution:

This question is cancelled and the other questions are graded over 25 points.
Due to a typo, the surface $x^{2}=2 y-y^{2}$ appeared as $x=2 y-y^{2}$ in the printed question which then requires the solution of a fourth degree polynomial whose roots are non-trivial.

Q-3) Use Stokes' theorem to evaluate the integral $\int_{C} \frac{y^{2}}{2} d x+z d y+x d z$, where C is the curve of intersection of the plane $x+z=1$ and the ellipsoid $x^{2}+2 y^{2}+z^{2}=1$, oriented counterclockwise as viewed from above.

Solution:

Let S be the planar region contained inside C on the plane $x+z=1$, and set $F=$ $(M, N, P)=\left(y^{2} / 2, z, x\right)$. Then

$$
\int_{C} \frac{y^{2}}{2} d x+z d y+x d z=\int_{C} F \cdot d r
$$

and Stokes' theorem says

$$
\int_{C} F \cdot d r=\iint_{S} \nabla \times F \cdot n d \sigma
$$

where $n=(1 / \sqrt{2}, 0,1 \sqrt{2})$ is the unit normal vector of S pointing upwards to be compatible with the orientation of C.
$d \sigma$ is the area element on the surfaces S. Here we can take $f(x, y, z)=x+z-1=0$ for S. Then $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot p|} d A$, where $p=(0,0,1)$ is the unit normal vector of the projection of S onto $x y$-plane. This gives $d \sigma=\sqrt{2} d A$.

We also have

$$
\begin{aligned}
\nabla \times F \cdot n & =\left(P_{y}-N_{z}, M_{z}-P_{x}, N_{x}-M_{y}\right) \cdot n \\
& =(-1,-1,-y) \cdot\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \\
& =-\frac{1}{\sqrt{2}}(1+y)
\end{aligned}
$$

Let D be the projection of S onto $x y$-plane. We find its bounding curve by eliminating z from the equations $x+z=1$ and $x^{2}+2 y^{2}+z^{2}=1$. This gives the circle $x^{2}-x+y^{2}=0$.

Then we have

$$
\begin{aligned}
\iint_{S} \nabla \times F \cdot n d \sigma & =-\iint_{D}(1+y) d A \\
& =-\iint_{D} d A-\iint_{D} y d A \\
& =-\frac{\pi}{4}
\end{aligned}
$$

Where the first integral gives the area of the circle while the second integral is zero since the odd function y is integrated around a symmetrical region around zero.

Q-4) Set up (but don't evaluate) the surface area integral of $y=z^{2}+x$ inside $x^{2}+y^{2}=1$.
Solution: Let S be this surface. It is given by $f(x, y, z)=z^{2}+x-y=0$. We need to express $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A$ in terms of x and y, since we will consider projection of S on $x y$-plane.

We have $\nabla f=(1,-1,2 z),|\nabla f|=\sqrt{2+4 z^{2}},|\nabla f \cdot \mathbf{k}|=|2 z|$.
After a careful examination of the projection of S on $x y$-plane, we can write
Surface Area of $S=\frac{1}{\sqrt{2}} \int_{-1 / \sqrt{2}}^{1 / \sqrt{2}} \int_{x}^{\sqrt{1-x^{2}}} \sqrt{2+\frac{1}{y-x}} d y d x+\frac{1}{\sqrt{2}} \int_{-1}^{-1 / \sqrt{2}} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{2+\frac{1}{y-x}} d y d x$.

Q-5) Let $\mathbf{G}=\frac{5}{x^{2}+y^{2}+z^{2}} \mathbf{i}+\frac{\cos x \sin y}{\left(x^{2}+y^{2}+z^{2}\right)^{5}} \mathbf{j}+\frac{e^{x} e^{y} e^{z}}{x^{4}+y^{4}+z^{4}} \mathbf{k}$. Find the flux of $\operatorname{curl}(\mathbf{G})$ across the surface $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=16\right\}$ away from the origin.

Solution: Let $S=A \cup B$ where A is the upper hemisphere and B is the lower hemisphere. Let C be the boundary of A correctly oriented. Then the boundary of B is $-C$. By Stokes' theorem the flux of $\operatorname{curl}(\mathbf{G})$ across A away from the origin is the circulation of \mathbf{G} along C, and the flux of $\operatorname{curl}(\mathbf{G})$ across B away from the origin is the circulation of \mathbf{G} along $-C$. Adding these up gives zero. In fact the flux of $\operatorname{curl}(\mathbf{G})$ across any closed orientable surface is zero.

Note that here we can not use divergence theorem since \mathbf{G} is not defined everywhere inside S.

