\qquad
\qquad
\qquad

Math 116 Calculus - QUIZ \# 10 - Solutions

Question: Use the surface integral in Stokes' theorem to calculate the circulation of the field $\mathbf{F}=2 y \mathbf{i}+3 x \mathbf{j}+z^{2} \mathbf{k}$ around the circle $x^{2}+y^{2}=9$ in the $x y$-plane, counterclockwise when viewed above.

Solution:

$$
\nabla \times \mathbf{F}=\mathbf{k}
$$

Surface S bounded by C is the disc $x^{2}+y^{2} \leq 9$ in the $x y$-plane. Hence $\mathbf{n}=\mathbf{k}$. Then

$$
\text { Circulation }=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}[\operatorname{Curl} \mathbf{F}] \cdot \mathbf{n} d \sigma=\iint_{R} d \sigma=9 \pi .
$$

Question: Use the surface integral in Stokes' theorem to calculate the circulation of the field $\mathbf{F}=3 y \mathbf{i}+2 x \mathbf{j}+\left(z^{3}+1\right) \mathbf{k}$ around the circle $x^{2}+y^{2}=4$ in the $x y$-plane, counterclockwise when viewed above.

Solution:

$$
\nabla \times \mathbf{F}=-\mathbf{k}
$$

Surface S bounded by C is the disc $x^{2}+y^{2} \leq 4$ in the $x y$-plane. Hence $\mathbf{n}=\mathbf{k}$. Then

$$
\text { Circulation }=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}[\operatorname{Curl} \mathbf{F}] \cdot \mathbf{n} d \sigma=-\iint_{R} d \sigma=-4 \pi
$$

