\qquad
STUDENT NO: \qquad

SECTION NUMBER:

\qquad

Math 116 Calculus - QUIZ \# 2

Q-1) Write the equations of the tangent lines to the ellipse $3 x^{2}+2 x y+2 y^{2}+x-7 y=7$ at the two points on it corresponding to $x=-1$.

Solutions: Let $f(x, y)=3 x^{2}+2 x y+2 y^{2}+x-7 y-7$. The equation of the tangent line at the point $\left(x_{0}, y_{0}\right)$ on the ellipse $f(x, y)=0$ is

$$
\nabla f\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}, y-y_{0}\right)=0
$$

When $x=-1$, we find the y-coordinate from the equation $f(-1, y)=2 y^{2}-9 y-5=0$ as $y=5$ and $y=-1 / 2$.

We calculate $\nabla f=(6 x+2 y+1,2 x+4 y-7)$, so

$$
\nabla f(-1,5)=(5,11) \text { and } \nabla f(-1,-1 / 2)=(-6,-11)
$$

The required equations for the tangent lines are then

$$
(5,11) \cdot(x+1, y-5)=0, \text { or } 5 x+11 y=50
$$

and

$$
(-6,-11) \cdot\left(x+1, y+\frac{1}{2}\right)=0, \text { or } 6 x+11 y=-\frac{23}{2} .
$$

When $x=1$, then the corresponding points are $(1,3)$ and $(1,-1 / 2)$. We then have

$$
\nabla f(1,3)=(13,7), \text { and } \nabla f(1,-1 / 2)=(6,-7)
$$

The equations of the tangent lines are

$$
(13,7) \cdot(x-1, y-3)=0, \text { or } 13 x+7 y=34
$$

and

$$
(6,-7) \cdot(x-1, y+1 / 2)=0, \text { or } 6 x-7 y=-19 / 2 .
$$

