Math 116 Calculus - QUIZ \# 6 - Solutions

Question: Evaluate the integral $\iint_{D} \frac{\cos (x-y)}{x^{2}+2 x y+y^{2}} d x d y$ where D is the region in the $x y$-plane bounded by the lines $x+y=1, x+y=2, x-y=3$ and $x-y=5$.

Solution: Use the substitution $u=x+y, v=x-y$.
Then $\frac{\partial(u, v)}{\partial(x, y)}=-2$, so $\frac{\partial(x, y)}{\partial(u, v)}=-\frac{1}{2}$.
In the $u v$-plane the region is bounded by the lines $u=1, u=2, v=3$ and $v=5$. Finally, the integral becomes:

$$
\begin{aligned}
\iint_{D} \frac{\cos (x-y)}{x^{2}+2 x y+y^{2}} d x d y & =\int_{3}^{5} \int_{1}^{2} \frac{\cos v}{u^{2}}\left|-\frac{1}{2}\right|^{5} d u d v \\
& =\frac{1}{2}\left(\left.\sin v\right|_{3} ^{5}\right)\left(-\left.\frac{1}{u}\right|_{1} ^{2}\right)=\frac{1}{4}(\sin 5-\sin 3) \\
& \approx-0.275
\end{aligned}
$$

Question: Evaluate the integral $\iint_{D} \frac{\sin (x-2 y)}{4 x^{2}+4 x y+y^{2}} d x d y$ where D is the region in the $x y$-plane bounded by the lines $x-2 y=1, x-2 y=3,2 x+y=4$ and $2 x+y=10$.

Solution: Use the substitution $u=x-2 y, v=2 x+y$. Then $\frac{\partial(u, v)}{\partial(x, y)}=5$, so $\frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{5}$.
In the $u v$-plane the region is bounded by the lines $u=1, u=3, v=4$ and $v=10$. Finally, the integral becomes:

$$
\begin{aligned}
\iint_{D} \frac{\sin (x-2 y)}{4 x^{2}+4 x y+y^{2}} d x d y & =\int_{4}^{10} \int_{1}^{3} \frac{\sin u}{v^{2}}\left(\frac{1}{5}\right) d u d v \\
& =\frac{1}{5}\left(-\left.\cos u\right|_{1} ^{3}\right)\left(-\left.\frac{1}{v}\right|_{4} ^{10}\right)=\frac{3}{100}(\cos 1-\cos 3) \\
& \approx 0.045
\end{aligned}
$$

