STUDENT NO:.....

SECTION NUMBER:

Math 116 Calculus – QUIZ # 8 – Solutions

Question: Show that the vector field $\mathbf{F} = xy^2 \mathbf{i} + x^2 y \mathbf{j}$ is conservative and find its potential function.

Solution: Let $\mathbf{F} = (M, N)$. \mathbf{F} is conservative since $M_y = N_x$. Let f(x, y) be a potential function for \mathbf{F} . We find f as follows.

$$f_x(x,y) = M = xy^2.$$

$$f(x,y) = \frac{1}{2}x^2y^2 + \phi(y).$$

$$f_y(x,y) = x^2y + \phi'(y) = N = x^2y, \text{ so } \phi(y) = c \text{ is constant.}$$

$$f(x,y) = \frac{1}{2}x^2y^2 + c, \text{ where } c \text{ is any constant.}$$

Question: Show that the vector field $\mathbf{F} = xy^2 \mathbf{i} + x^2 y \mathbf{j} + 2z \mathbf{k}$ is conservative and find its potential function.

Let $\mathbf{F} = (M, N, P)$. \mathbf{F} is conservative since $M_y = N_x$, $M_z = P_x$ and $N_z = P_y$. Let f(x, y, z) be a potential function for \mathbf{F} . We find f as follows.