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PLEASE READ:
Check that there are 5 questions on your exam booklet. Write your name on the top of every
page. A correct answer without proper reasoning may not get any credit. For this exam take
N = {1, 2, . . . }.

Q-1) Write in plain words the negation of the following two statements:
(a) For every positive integer d, every finite group G whose order is divisible by d has
a subgroup of order d.
(b) There exists an ε > 0 such that for every δ > 0 we can find two points x, y ∈ R
such that |x− y| < δ but |f(x)− f(y)| ≥ ε.

Solution:
(a) There exists a positive integer d and a finite group G whose order is divisible by d
such that G has no subgroup of order d.
(b) For every ε > 0 there exists a δ > 0 such that for every x, y ∈ R either |x − y| ≥ δ
or |f(x)− f(y)| < ε. (This last part is equivalent to |x− y| < δ ⇒ |f(x)− f(y)| < ε.)
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Q-2) Prove or disprove that the set of all finite subsets of N is uncountable.

Solution: Let H be the set of all finite subsets of N. We will show that H is countable.
For this we will find an injection from H into N.

Let the prime numbers be ordered as p1, p2, . . . .

Define φ : H → N as follows: If A = {a1, . . . , an} is a finite subset of N, then define
φ(A) = pa1 · · · pan .

It is clear that φ is an injection.

H being isomorphic (set theoretically) to the subset φ(H) of N is itself countable.

Other solutions from your exam papers:

• φ(A) = pa1
1 · · · pan

n is a nice variation of the above proof.

• We can write every finite set as A = {a1, . . . , an} where a1 < · · · < an. Send A to the
rational number 0.a1a2 · · · an, where we just juxtapose the integers to form the mentioned
rational number. Now observe that only countably many finite sets will map onto the
same rational number. Since H maps into rationals, it is then the union of countably
many countable sets.

• Order all finite sets with lex ordering. Then H is the union of countably many countable
sets.

• Let Hk be the collection of all finite sets whose maximal number is k. Clearly Hk is
finite and H =

⋃∞
k=1 Hk is countable. Brilliant!
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Q-3) Which, if any, of the following numbers belong to the Cantor set?

35

108
,

70

108
,

105

108
·

Solution: 35 = (1022)3, 108 = (11000)3. Using long division we find that

35

108
= 0.30222020202 . . .

so is an element of the Cantor set. On the other hand

70

108
= 2× 35

108
= (2)3 × 0.30222020202 · · · = 0.31221111 . . .

so is not an element of the Cantor set, but

105

108
= 3× 35

108
= (10)3 × 0.30222020202 · · · = 0.3222020202 . . .

and is an element of the Cantor set.

The best way to see that
70

108
is not in the Cantor set is to observe that

1

3
<

70

108
<

2

3
.

(This is also from your exam solutions.)
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Q-4) Let A ⊂ [0, 1] be an infinite set. Prove or disprove the following statement:

∀x0 ∈ [0, 1], ∃ ε > 0 such that ∀x ∈ A either x = x0 or |x− x0| ≥ ε.

Solution: This question is not exactly what I intended to ask. As it is written the
question asks if the following statement is correct:

∀ infinite set A ⊂ [0, 1], ∀x0 ∈ [0, 1], ∃ ε > 0 such that ∀x ∈ A either x = x0 or |x−x0| ≥ ε.

To show that it is wrong, it suffices to find an A which is a counterexample. That is, we
should prove that

∃ an infinite set A ⊂ [0, 1], ∃x0 ∈ [0, 1], ∀ ε > 0, ∃x ∈ A such that x 6= x0 and |x−x0| < ε.

For this take A = [0, 1], x0 = 0, and for any ε > 0 take x = ε/2. Now clearly x 6= x0 and
|x− x0| < ε.

However, what I had in mind, but not on paper, is the following statement:

∃ an infinite set A ⊂ [0, 1], ∀x0 ∈ [0, 1], ∃ ε > 0 such that ∀x ∈ A either x = x0 or
|x− x0| ≥ ε.

This statement is false. The following is a proof of its converse:

∀ infinite set A ⊂ [0, 1], ∃x0 ∈ [0, 1] such that ∀ ε > 0, ∃x ∈ A such that 0 < |x−x0| < ε.

For this we apply the following procedure. Let I0 = [0, 1].

Assuming that In = [an, bn] is defined, we define In+1 = [an+1, bn+1] = [an,
an + bn

2
]

if [an, an+bn

2
] contains infinitely many elements of A, and define In+1 = [an+1, bn+1] =

[
an + bn

2
, bn] otherwise.

We observe that a0 ≤ a1 ≤ a2 ≤ · · · , b0 ≥ b1 ≥ b2 ≥ · · · and an < bn for all n.

The sequence {an} is a bounded increasing sequence so has a limit a. Similarly the
sequence {bn} is a bounded decreasing sequence and has a limit b.

Clearly an ≤ a ≤ b ≤ bn for all n.

If we use `(In) to denote the length of In, we see that `(In) = bn − an = 1/2n.

Let ε > 0 be given.

Choose n such that 0 < 1/2n < ε. Then b− a ≤ bn − an = `(In) = 1/2n < ε. This forces
a = b.

Let x0 = a. Since I0 ⊃ I1 ⊃ · · · ⊃ In ⊃ In+1 ⊃ · · · , x0 ∈ In for all n.

Now observe that for any x ∈ In, |x− x0| ≤ bn − an < ε. Since A ∩ In contains infinitely
many elements, we can choose x ∈ A ∩ In different than x0. This proves the statement
which we claimed to be true. (The name of this statement is Bolzano-Weierstrass Theo-
rem.)
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Q-5) Let G be a finite group and H a subgroup with the property that i(H) is the smallest
prime p dividing the order of G. Show that H is a normal subgroup of G.
Hint: Show that G permutes the set of right cosets of H and that the kernel must be
contained in H. Now use Lagrange’s theorem together with the fact that no prime larger
than or equal to p can divide (p− 1)!.

Solution: Let K be the set of right cosets of H in G. The cardinality of K is i(H) = p.
(Here i(H) = o(G)/o(H) and is called the index of H in G.) The symmetric group Sp acts
on K by simply permuting its elements. Each element of G also permutes elements of K
by simply multiplying each right coset from the right and hence sending it onto another
right coset, not necessarily distinct than the original one. This defines a map φ : G → Sp.
Check that this defines a homomorphism. We know that φ(G) is a subgroup of Sp, so
o(G) divides the order of Sp which is p!.

If a ∈ ker φ. Then a leaves each right coset of H fixed, in particular H = Ha, so
a ∈ H. Hence ker φ is a subgroup of H and its order must divide the order of H. Let
m o(ker φ) = o(H) for some positive integer m.

Since o(H)|o(G), m must also divide the order of G. By our description of p, if q is a
prime dividing m, then q ≥ p.

We know that φ(G) is isomorphic to G/ ker φ, so o(φ(G)) = o(G)/(o(H)/m) = m o(G)/o(H) =
m i(H) = mp. We know that this number divides p!, so m|(p− 1)!.

If q is a prime dividing m, then q|(p − 1)! so q is a prime strictly less than p. This
contradicts what we found about q above. So no prime divides m, forcing m = 1.

This says that H = ker φ and hence is a normal subgroup since all kernels are normal.

Please forward any comments or questions to sertoz@bilkent.edu.tr


