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PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every

page. A correct answer without proper reasoning may not get any credit. For this exam take
N={1,2,...}.

Q-1) Write in plain words the negation of the following two statements:
(a) For every positive integer d, every finite group G whose order is divisible by d has
a subgroup of order d.
(b) There exists an € > 0 such that for every 6 > 0 we can find two points z,y € R
such that |z —y| < 0 but |f(z) — f(y)| > e

Solution:

(a) There exists a positive integer d and a finite group G whose order is divisible by d
such that G has no subgroup of order d.

(b) For every € > 0 there exists a 6 > 0 such that for every z,y € R either |[x —y| > ¢
or |f(z) — f(y)| <e. (This last part is equivalent to |z —y| < 0 = |f(z) — f(y)| <€)
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Q-2) Prove or disprove that the set of all finite subsets of N is uncountable.

Solution: Let H be the set of all finite subsets of N. We will show that H is countable.
For this we will find an injection from H into N.

Let the prime numbers be ordered as py, po, . . ..

Define ¢ : H — N as follows: If A = {ay,...,a,} is a finite subset of N, then define
¢(A) = Pay """ Pay-

It is clear that ¢ is an injection.

H being isomorphic (set theoretically) to the subset ¢(H) of N is itself countable.
Other solutions from your exam papers:

e ¢(A) = p{'---pi is a nice variation of the above proof.

e We can write every finite set as A = {ay,...,a,} where a; < --- < a,. Send A to the
rational number 0.a1as - - - a,, where we just juxtapose the integers to form the mentioned
rational number. Now observe that only countably many finite sets will map onto the
same rational number. Since H maps into rationals, it is then the union of countably
many countable sets.

e Order all finite sets with lex ordering. Then H is the union of countably many countable
sets.

e Let Hj be the collection of all finite sets whose maximal number is k. Clearly Hy is
finite and H = (J,-, Hy is countable. Brilliant!
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Q-3) Which, if any, of the following numbers belong to the Cantor set?

35 70 105
108" 108" 108

Solution: 35 = (1022)3, 108 = (11000)3. Using long division we find that

35
— = 0.30222020202.. ..
103 0.3022202020

so is an element of the Cantor set. On the other hand

70 35

m2x = (2 50222020202 - - - = 0.51221111 . ..
05 = 2% 7og = (s X 05022202020 0.3

so is not an element of the Cantor set, but

105 35
— =3 x — = (10 0.50222020202 - - - = 0.5222020202. ..
T0s > 108~ (10)sx 03 3
and is an element of the Cantor set.
The best way to see that E is not in the Cantor set is to observe that 1 < E < g
ey 108 v 35108 ° 3

(This is also from your exam solutions.)
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Q-4) Let A C [0, 1] be an infinite set. Prove or disprove the following statement:

Vo € [0,1], 3e > 0 such that Vo € A either z = zg or |z — zo| > €.

Solution: This question is not exactly what I intended to ask. As it is written the
question asks if the following statement is correct:

V infinite set A C [0, 1], Vg € [0,1], 3e > 0 such that Va € A either z = zg or |z —x0| > €.

To show that it is wrong, it suffices to find an A which is a counterexample. That is, we
should prove that

J an infinite set A C [0, 1], 3z € [0,1], Ve > 0, Iz € A such that x # x¢ and |z —x| < €.

For this take A = [0, 1], o = 0, and for any ¢ > 0 take x = ¢/2. Now clearly x # zo and
|z — x| < e.

However, what I had in mind, but not on paper, is the following statement:

3 an infinite set A C [0,1], Vxo € [0,1], Je > 0 such that Vo € A either z = x4 or
|z — 20| > €.

This statement is false. The following is a proof of its converse:

V infinite set A C [0,1], Ixo € [0, 1] such that Ve > 0, 3z € A such that 0 < |z — x| < e.

For this we apply the following procedure. Let Iy = [0, 1].

n bn
Assuming that I, = [an,b,] is defined, we define I,.1 = [ani1,bnt1] = [an, a4 —2i_ ]
if [an,b%] contains infinitely many elements of A, and define I,,;1 = [ani1,0n41] =
a’n + n

[

We observe that ag < a1 <ay <---, by > by > by > --- and a, < b, for all n.

, by otherwise.

The sequence {a,} is a bounded increasing sequence so has a limit a. Similarly the
sequence {b,} is a bounded decreasing sequence and has a limit b.

Clearly a, < a < b < b, for all n.
If we use ¢(1,,) to denote the length of I,,, we see that ¢(1,,) = b, — a,, = 1/2".
Let € > 0 be given.

Choose n such that 0 < 1/2" <e. Then b —a < b, — a,, = {(I,) = 1/2" < e. This forces
a=b.

Let zp =a. Since [y D1 D--- D1, DI, 11 D, 2o € I, for all n.

Now observe that for any = € I,,, |x — zo| < b, — a,, < €. Since AN I, contains infinitely
many elements, we can choose x € AN I, different than x,. This proves the statement
which we claimed to be true. (The name of this statement is Bolzano-Weierstrass Theo-
rem.)
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Q-5) Let G be a finite group and H a subgroup with the property that i(H) is the smallest
prime p dividing the order of G. Show that H is a normal subgroup of G.
Hint: Show that G permutes the set of right cosets of H and that the kernel must be
contained in H. Now use Lagrange’s theorem together with the fact that no prime larger
than or equal to p can divide (p — 1)

Solution: Let K be the set of right cosets of H in G. The cardinality of K is i(H) = p.
(Here i(H) = o(G)/o(H) and is called the index of H in G.) The symmetric group S, acts
on K by simply permuting its elements. Each element of G also permutes elements of K
by simply multiplying each right coset from the right and hence sending it onto another
right coset, not necessarily distinct than the original one. This defines a map ¢ : G — S),.
Check that this defines a homomorphism. We know that ¢(G) is a subgroup of S, so
o(@) divides the order of S, which is p!.

If a € ker¢. Then a leaves each right coset of H fixed, in particular H = Ha, so
a € H. Hence ker ¢ is a subgroup of H and its order must divide the order of H. Let
m o(ker ¢) = o( H) for some positive integer m.

Since o(H)|o(G), m must also divide the order of G. By our description of p, if ¢ is a
prime dividing m, then ¢ > p.

We know that ¢(G) is isomorphic to G/ ker ¢, so o(¢(G)) = o(G)/(o(H)/m) = m o(G)/o(H) =
m i(H) = mp. We know that this number divides p!, so m|(p — 1)!.

If ¢ is a prime dividing m, then ¢|(p — 1)! so ¢ is a prime strictly less than p. This
contradicts what we found about ¢ above. So no prime divides m, forcing m = 1.

This says that H = ker ¢ and hence is a normal subgroup since all kernels are normal.

Please forward any comments or questions to sertoz@bilkent.edu.tr




