\qquad
\qquad

Math 123 Abstract Mathematics I - Final Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. A correct answer without proper reasoning may not get any credit. For this exam take $\mathbb{N}=\{1,2, \ldots\}$.

Q-1) Write in plain words the negation of the following two statements:
(a) For every positive integer d, every finite group G whose order is divisible by d has a subgroup of order d.
(b) There exists an $\epsilon>0$ such that for every $\delta>0$ we can find two points $x, y \in \mathbb{R}$ such that $|x-y|<\delta$ but $|f(x)-f(y)| \geq \epsilon$.

Solution:

(a) There exists a positive integer d and a finite group G whose order is divisible by d such that G has no subgroup of order d.
(b) For every $\epsilon>0$ there exists a $\delta>0$ such that for every $x, y \in \mathbb{R}$ either $|x-y| \geq \delta$ or $|f(x)-f(y)|<\epsilon$. (This last part is equivalent to $|x-y|<\delta \Rightarrow|f(x)-f(y)|<\epsilon$.)

Q-2) Prove or disprove that the set of all finite subsets of \mathbb{N} is uncountable.
Solution: Let H be the set of all finite subsets of \mathbb{N}. We will show that H is countable. For this we will find an injection from H into \mathbb{N}.

Let the prime numbers be ordered as p_{1}, p_{2}, \ldots.
Define $\phi: H \rightarrow \mathbb{N}$ as follows: If $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite subset of \mathbb{N}, then define $\phi(A)=p_{a_{1}} \cdots p_{a_{n}}$.

It is clear that ϕ is an injection.
H being isomorphic (set theoretically) to the subset $\phi(H)$ of \mathbb{N} is itself countable.
Other solutions from your exam papers:

- $\phi(A)=p_{1}^{a_{1}} \cdots p_{n}^{a_{n}}$ is a nice variation of the above proof.
- We can write every finite set as $A=\left\{a_{1}, \ldots, a_{n}\right\}$ where $a_{1}<\cdots<a_{n}$. Send A to the rational number $0 . a_{1} a_{2} \cdots a_{n}$, where we just juxtapose the integers to form the mentioned rational number. Now observe that only countably many finite sets will map onto the same rational number. Since H maps into rationals, it is then the union of countably many countable sets.
- Order all finite sets with lex ordering. Then H is the union of countably many countable sets.
- Let H_{k} be the collection of all finite sets whose maximal number is k. Clearly H_{k} is finite and $H=\bigcup_{k=1}^{\infty} H_{k}$ is countable. Brilliant!

Q-3) Which, if any, of the following numbers belong to the Cantor set?

$$
\frac{35}{108}, \frac{70}{108}, \frac{105}{108} .
$$

Solution: $35=(1022)_{3}, 108=(11000)_{3}$. Using long division we find that

$$
\frac{35}{108}=0.30222020202 \ldots
$$

so is an element of the Cantor set. On the other hand

$$
\frac{70}{108}=2 \times \frac{35}{108}=(2)_{3} \times 0.0_{3} 0222020202 \cdots=0 .{ }_{3} 1221111 \ldots
$$

so is not an element of the Cantor set, but

$$
\frac{105}{108}=3 \times \frac{35}{108}=(10)_{3} \times 0.30222020202 \cdots=0.3222020202 \ldots
$$

and is an element of the Cantor set.
The best way to see that $\frac{70}{108}$ is not in the Cantor set is to observe that $\frac{1}{3}<\frac{70}{108}<\frac{2}{3}$. (This is also from your exam solutions.)

Q-4) Let $A \subset[0,1]$ be an infinite set. Prove or disprove the following statement:

$$
\forall x_{0} \in[0,1], \exists \epsilon>0 \text { such that } \forall x \in A \text { either } x=x_{0} \text { or }\left|x-x_{0}\right| \geq \epsilon .
$$

Solution: This question is not exactly what I intended to ask. As it is written the question asks if the following statement is correct:
\forall infinite set $A \subset[0,1], \forall x_{0} \in[0,1], \exists \epsilon>0$ such that $\forall x \in A$ either $x=x_{0}$ or $\left|x-x_{0}\right| \geq \epsilon$.
To show that it is wrong, it suffices to find an A which is a counterexample. That is, we should prove that
\exists an infinite set $A \subset[0,1], \exists x_{0} \in[0,1], \forall \epsilon>0, \exists x \in A$ such that $x \neq x_{0}$ and $\left|x-x_{0}\right|<\epsilon$.
For this take $A=[0,1], x_{0}=0$, and for any $\epsilon>0$ take $x=\epsilon / 2$. Now clearly $x \neq x_{0}$ and $\left|x-x_{0}\right|<\epsilon$.

However, what I had in mind, but not on paper, is the following statement:
\exists an infinite set $A \subset[0,1], \forall x_{0} \in[0,1], \exists \epsilon>0$ such that $\forall x \in A$ either $x=x_{0}$ or $\left|x-x_{0}\right| \geq \epsilon$.

This statement is false. The following is a proof of its converse:
\forall infinite set $A \subset[0,1], \exists x_{0} \in[0,1]$ such that $\forall \epsilon>0, \exists x \in A$ such that $0<\left|x-x_{0}\right|<\epsilon$.
For this we apply the following procedure. Let $I_{0}=[0,1]$.
Assuming that $I_{n}=\left[a_{n}, b_{n}\right]$ is defined, we define $I_{n+1}=\left[a_{n+1}, b_{n+1}\right]=\left[a_{n}, \frac{a_{n}+b_{n}}{2}\right]$ if $\left[a_{n}, \frac{a_{n}+b_{n}}{2}\right]$ contains infinitely many elements of A, and define $I_{n+1}=\left[a_{n+1}, b_{n+1}\right]=$ $\left[\frac{a_{n}+b_{n}}{2}, b_{n}\right]$ otherwise.

We observe that $a_{0} \leq a_{1} \leq a_{2} \leq \cdots, b_{0} \geq b_{1} \geq b_{2} \geq \cdots$ and $a_{n}<b_{n}$ for all n.
The sequence $\left\{a_{n}\right\}$ is a bounded increasing sequence so has a limit a. Similarly the sequence $\left\{b_{n}\right\}$ is a bounded decreasing sequence and has a limit b.

Clearly $a_{n} \leq a \leq b \leq b_{n}$ for all n.
If we use $\ell\left(I_{n}\right)$ to denote the length of I_{n}, we see that $\ell\left(I_{n}\right)=b_{n}-a_{n}=1 / 2^{n}$.
Let $\epsilon>0$ be given.
Choose n such that $0<1 / 2^{n}<\epsilon$. Then $b-a \leq b_{n}-a_{n}=\ell\left(I_{n}\right)=1 / 2^{n}<\epsilon$. This forces $a=b$.

Let $x_{0}=a$. Since $I_{0} \supset I_{1} \supset \cdots \supset I_{n} \supset I_{n+1} \supset \cdots, x_{0} \in I_{n}$ for all n.
Now observe that for any $x \in I_{n},\left|x-x_{0}\right| \leq b_{n}-a_{n}<\epsilon$. Since $A \cap I_{n}$ contains infinitely many elements, we can choose $x \in A \cap I_{n}$ different than x_{0}. This proves the statement which we claimed to be true. (The name of this statement is Bolzano-Weierstrass Theorem.)

Q-5) Let G be a finite group and H a subgroup with the property that $i(H)$ is the smallest prime p dividing the order of G. Show that H is a normal subgroup of G.
Hint: Show that G permutes the set of right cosets of H and that the kernel must be contained in H. Now use Lagrange's theorem together with the fact that no prime larger than or equal to p can divide $(p-1)$!.

Solution: Let K be the set of right cosets of H in G. The cardinality of K is $i(H)=p$. (Here $i(H)=o(G) / o(H)$ and is called the index of H in G.) The symmetric group S_{p} acts on K by simply permuting its elements. Each element of G also permutes elements of K by simply multiplying each right coset from the right and hence sending it onto another right coset, not necessarily distinct than the original one. This defines a map $\phi: G \rightarrow S_{p}$. Check that this defines a homomorphism. We know that $\phi(G)$ is a subgroup of S_{p}, so $o(G)$ divides the order of S_{p} which is $p!$.

If $a \in \operatorname{ker} \phi$. Then a leaves each right coset of H fixed, in particular $H=H a$, so $a \in H$. Hence $\operatorname{ker} \phi$ is a subgroup of H and its order must divide the order of H. Let $m o(\operatorname{ker} \phi)=o(H)$ for some positive integer m.

Since $o(H) \mid o(G), m$ must also divide the order of G. By our description of p, if q is a prime dividing m, then $q \geq p$.

We know that $\phi(G)$ is isomorphic to $G / \operatorname{ker} \phi$, so $o(\phi(G))=o(G) /(o(H) / m)=m o(G) / o(H)=$ $m i(H)=m p$. We know that this number divides p !, so $m \mid(p-1)$!.

If q is a prime dividing m, then $q \mid(p-1)$! so q is a prime strictly less than p. This contradicts what we found about q above. So no prime divides m, forcing $m=1$.

This says that $H=\operatorname{ker} \phi$ and hence is a normal subgroup since all kernels are normal.

Please forward any comments or questions to sertoz@bilkent.edu.tr

