\qquad

Math 123 Abstract Mathematics I
 Homework 1 - Solutions

In the following problems assume only the validity of Peano axioms P1-P7 as stated on pages 106 and 110. The hint of problem 1 can be used, after slight modification, also for the other problems.

1) Show that addition is associative.

Hint: For $n \in \mathbb{N}$ let $P(n)$ be the statement that $\forall m, k \in \mathbb{N},(m+k)+n=m+(k+n)$. Then prove $P(n)$ by induction for all $n \in \mathbb{N}$.
2) Show that for all $m \in \mathbb{N}, 1+m=m+1$.
3) Show that addition in \mathbb{N} is commutative.
4) Show that cancellation holds for addition in \mathbb{N}, i.e. for all $k, m, n \in \mathbb{N}, m+n=$ $k+n \Longrightarrow m=k$.

Solutions:

1) We use the hint. First we show that $P(1)$ is true. $(\stackrel{P 6}{=}$ means that Peano axiom no 6 is used for the equality, and $\stackrel{P(n)}{=}$ means that the induction hypothesis $P(n)$ is used.) $(m+k)+1 \stackrel{P 6}{=}(m+k)^{\prime} \stackrel{P 7}{=} m+k^{\prime} \stackrel{P 6}{=} m+(k+1)$. This establishes the validity of $P(1)$.

Next we assume $P(n)$, i.e. $(m+k)+n=m+(k+n)$.
Next we check $P\left(n^{\prime}\right)$.
$(m+k)+n^{\prime} \stackrel{P 7}{=}((m+k)+n)^{\prime} \stackrel{P(n)}{=}(m+(k+n))^{\prime} \stackrel{P 7}{=} m+(k+n)^{\prime} \stackrel{P 7}{=} m+\left(k+n^{\prime}\right)$. This establishes the validity of $P\left(n^{\prime}\right)$, and this completes the proof of associativity.
2) Let $P(m)$ be the statement that $1+m=m+1$.

When $m=1$ we have the trivial relation $1+1=1+1$, so $P(1)$ holds.
Assume $P(n)$ and check $P\left(n^{\prime}\right)$. (Here $\stackrel{Q 1}{=}$ means the result of question 1 above is used.)
$1+m^{\prime} \stackrel{P 6}{=} 1+(m+1) \stackrel{\text { associativity }}{=}(1+m)+1 \stackrel{P(1)}{=}(m+1)+1 \stackrel{P 6}{=} m^{\prime}+1$. Thus $P\left(n^{\prime}\right)$ holds and the proof is complete.
3) Let $P(n)$ be the statement that for all natural numbers m we have $m+n=n+m$. $P(1)$ is established in problem 1.

Assume $P(n)$ and check for $P\left(n^{\prime}\right)$. (Here $\stackrel{Q 2}{=}$ means the result of question 2 above is used.)
$m+n^{\prime} \stackrel{P 6}{=} m+(n+1) \stackrel{Q 1}{=}(m+n)+1 \stackrel{P 6}{=}(m+n)^{\prime} \stackrel{Q 2}{=}(n+m)^{\prime} \stackrel{P 7}{=} n+m^{\prime} \stackrel{P 6}{=} n+(m+1) \stackrel{Q 2}{=}$ $n+(1+m) \stackrel{Q 1}{=}(n+1)+m \stackrel{P 6}{=} n^{\prime}+m$. This establishes $P\left(n^{\prime}\right)$ and completes the proof.
4) Let $P(n)$ be the statement "If m and k are natural numbers and if $m+n=k+n$ for a natural number n, then $m=k$ ".
$P(1)$ is exactly $P 4$, the Peano axiom 4.
Assume $P(n)$ and check for $P\left(n^{\prime}\right)$.
If $m+n^{\prime}=k+n^{\prime}$, then by $P 7(m+n)^{\prime}=(k+n)^{\prime}$. From this by $P 4$ we get $m+n=k+n$ and this implies by $P(n)$ that $m=k$, which establishes $P\left(n^{\prime}\right)$ and completes the proof.

Comments to sertoz@bilkent.edu.tr

