Math 123 - Homework 2 - Solutions

Q-1) Let S_{n} be the permutation group on n objects. Show that S_{2} is abelian but S_{n} is not abelian for any $n>2$.

Solution: $o\left(S_{n}\right)=n$!, so in particular $o\left(S_{2}\right)=2$ and is abelian since there is only one group, up to isomorphism, of order 2 and it is abelian.

Observe that S_{n} can be considered as a subgroup of every S_{m} for any $m>n ; S_{n}$ simply permutes the first n elements leaving the rest unchanged. Thus if we can show that there are two elements $a, b \in S_{3}$ such that $a b \neq b a$, then that will prove that each S_{n} with $n>2$ is non-abelian. For this let $a=(123)$ and $b=(12)$. Check that $(123) \circ(12)=(321)$ and $(12) \circ(123)=(132)$, where \circ denotes composition of the permutations as functions from $\{1,2,3\}$ to $\{1,2,3\}$.

Q-2) If G is a group with the property that $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$, then show that G is abelian.

Solution:

$$
\begin{aligned}
(a b)^{2} & =a^{2} b^{2} \\
a b a b & =a a b b \\
a^{-1}(a b a b) b^{-1} & =a^{-1}(a a b b) b^{-1} \\
b a & =a b .
\end{aligned}
$$

Q-3) Show that in S_{3} there are four elements satisfying $x^{2}=e$ and three elements satisfying $y^{3}=e$.

Solution: The four elements satisfying $x^{2}=e$ are $e,(12),(13),(23)$, and the three elements satisfying $y^{3}=e$ are e, (123), (132).

Q-4) Let G be a nonempty set closed under an associative product such that there is an element $e \in G$ with the properties that (i) $a \cdot e=a$ for all $a \in G$, and (ii) for all $a \in G$ there is an element $i(a) \in G$ with $a \cdot i(a)=e$. Show that G is a group with this operation.

Solution: We first show that every right inverse is also a left inverse. Let $a \in G$, and set $i(a)=b, i(b)=c$. We have $a b=e$ and $b c=e$. On one hand we have $a b c=(a b) c=e c$, and on the other hand we have $a b c=a(b c)=a e=a$. Thus $a=e c$. Now $b a=b(e c)=$ $(b e) c=b c=e$. Hence every right inverse is also a left inverse.

Next we show that e is also a left identity. Let $a \in G$. Again set $b=i(a)$. We just showed that $a b=b a=e$. Now $e a=(a b) a=a(b a)=a e=a$.

Thus we showed that the requirements for G to be group are satisfied.

Q-5) Let G be a group and H a subgroup. For any $a, b \in G$ define $a \sim b$ if $a b^{-1} \in H$. We say a is congruent to $b \bmod H$, and write $a \equiv b \bmod H$. Show that this is an equivalence relation.

Solution: For every $a \in G, a a^{-1}=e \in H$, so $a \sim a$.
If $a \sim b$, then $a b^{-1} \in H$ so $\left(a b^{-1}\right)^{-1}=b a^{-1} \in H$, and $b \sim a$.
If $a \sim b$ and $b \sim c$, then $a b^{-1}, b c^{-1} \in H$ so $a b^{-1} b c^{-1}=a c^{-1} \in H$ and $a \sim c$.
Hence this is an equivalence relation.

Q-6) Let G be a group, H a subgroup and $a \in G$ an element. Define the following subsets of G :

$$
\begin{aligned}
N(a) & =\{x \in G \mid x a=a x\}, \\
N(H) & =\left\{x \in G \mid x H x^{-1}=H\right\}, \\
C(H) & =\{x \in G \mid \forall a \in H, x a=a x\}, \\
Z & =\{x \in G \mid \forall a \in G, x a=a x\} .
\end{aligned}
$$

Prove that these are subgroups of $G .(N(a)$ and $N(H)$ are called the normalizer of a and H in G, respectively. $C(H)$ is called the centralizer of H in $G . Z$ is called the center of G.)

Solution:

Recall that for H to be a subgroup of G we have to show that (i) if $x, y \in H$ then $x y \in H$, and (ii) if $x \in H$ then $x^{-1} \in H$.
$\mathbf{N}(\mathbf{a})$ is a subgroup: Let $x, y \in N(a)$. Then $(x y) a=x(y a)=x(a y)=(x a) y=$ $(a x) y=a(x y)$, so $x y \in N(a)$. And $x a=a x, x^{-1}(x a) x^{-1}=x^{-1}(a x) x^{-1}, a x^{-1}=x^{-1} a$, so $x^{-1} \in N(a)$.
$\mathbf{N}(\mathbf{H})$ is a subgroup: Let $x, y \in N(H)$. Then $(x y) H(x y)^{-1}=x y H y^{-1} x^{-1}=x H x^{-1}=$ H, and $H=x^{-1}\left(x H x^{-1}\right) x=x^{-1} H x$.
$\mathbf{C}(\mathbf{H})$ is a subgroup: This is similar to the first part if you notice that $x \in N(H)$ means that x commutes with elements of H.

Z is a subgroup: This is again similar to the first case.

Q-7) Let $\phi: G \rightarrow H$ be a homomorphism between the groups G and H. Define the kernel of ϕ as $\operatorname{ker} \phi=\left\{x \in G \mid \phi(x)=e_{H}\right\}$ where e_{H} is the identity of H. Show that $\operatorname{ker} \phi$ is a normal subgroup of G.

Solution: We want to show that for every $g \in G$ and for every $h \in \operatorname{ker} \phi$, we must have $g h g^{-1} \in \operatorname{ker} \phi$. But since ϕ is a homomorphism we have $\phi\left(g h g^{-1}\right)=\phi(g) \phi(h) \phi\left(g^{-1}\right)=$ $\phi(g) e_{H} \phi(g)^{-1}=e_{H}$, and hence the result.

Grading: Problem 6 is 40 points, the other problems are 10 points each.

Please forward any comments or questions to sertoz@bilkent.edu.tr

