Math 123 – Homework 2 – Solutions

Q-1) Let S_n be the permutation group on n objects. Show that S_2 is abelian but S_n is not abelian for any n > 2.

Solution: $o(S_n) = n!$, so in particular $o(S_2) = 2$ and is abelian since there is only one group, up to isomorphism, of order 2 and it is abelian.

Observe that S_n can be considered as a subgroup of every S_m for any m > n; S_n simply permutes the first n elements leaving the rest unchanged. Thus if we can show that there are two elements $a, b \in S_3$ such that $ab \neq ba$, then that will prove that each S_n with n > 2is non-abelian. For this let a = (123) and b = (12). Check that $(123) \circ (12) = (321)$ and $(12) \circ (123) = (132)$, where \circ denotes composition of the permutations as functions from $\{1, 2, 3\}$ to $\{1, 2, 3\}$.

Q-2) If G is a group with the property that $(ab)^2 = a^2b^2$ for all $a, b \in G$, then show that G is abelian.

Solution:

$$(ab)^2 = a^2b^2$$

$$abab = aabb$$

$$a^{-1}(abab)b^{-1} = a^{-1}(aabb)b^{-1}$$

$$ba = ab.$$

Q-3) Show that in S_3 there are four elements satisfying $x^2 = e$ and three elements satisfying $y^3 = e$.

Solution: The four elements satisfying $x^2 = e$ are e, (12), (13), (23), and the three elements satisfying $y^3 = e$ are e, (123), (132).

Q-4) Let G be a nonempty set closed under an associative product such that there is an element $e \in G$ with the properties that (i) $a \cdot e = a$ for all $a \in G$, and (ii) for all $a \in G$ there is an element $i(a) \in G$ with $a \cdot i(a) = e$. Show that G is a group with this operation.

Solution: We first show that every right inverse is also a left inverse. Let $a \in G$, and set i(a) = b, i(b) = c. We have ab = e and bc = e. On one hand we have abc = (ab)c = ec, and on the other hand we have abc = a(bc) = ae = a. Thus a = ec. Now ba = b(ec) = (be)c = bc = e. Hence every right inverse is also a left inverse.

Next we show that e is also a left identity. Let $a \in G$. Again set b = i(a). We just showed that ab = ba = e. Now ea = (ab)a = a(ba) = ae = a.

Thus we showed that the requirements for G to be group are satisfied.

Q-5) Let G be a group and H a subgroup. For any $a, b \in G$ define $a \sim b$ if $ab^{-1} \in H$. We say a is congruent to b mod H, and write $a \equiv b \mod H$. Show that this is an equivalence relation.

Solution: For every $a \in G$, $aa^{-1} = e \in H$, so $a \sim a$.

If $a \sim b$, then $ab^{-1} \in H$ so $(ab^{-1})^{-1} = ba^{-1} \in H$, and $b \sim a$.

If $a \sim b$ and $b \sim c$, then $ab^{-1}, bc^{-1} \in H$ so $ab^{-1}bc^{-1} = ac^{-1} \in H$ and $a \sim c$.

Hence this is an equivalence relation.

Q-6) Let G be a group, H a subgroup and $a \in G$ an element. Define the following subsets of G:

$$\begin{array}{lll} N(a) &=& \{x \in G \mid xa = ax \}, \\ N(H) &=& \{x \in G \mid xHx^{-1} = H \}, \\ C(H) &=& \{x \in G \mid \forall a \in H, \ xa = ax \}, \\ Z &=& \{x \in G \mid \forall a \in G, \ xa = ax \}. \end{array}$$

Prove that these are subgroups of G. (N(a) and N(H) are called the normalizer of aand H in G, respectively. C(H) is called the *centralizer* of H in G. Z is called the *center* of G.)

Solution:

Recall that for H to be a subgroup of G we have to show that (i) if $x, y \in H$ then $xy \in H$, and (ii) if $x \in H$ then $x^{-1} \in H$.

N(a) is a subgroup: Let $x, y \in N(a)$. Then (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy), so $xy \in N(a)$. And xa = ax, $x^{-1}(xa)x^{-1} = x^{-1}(ax)x^{-1}$, $ax^{-1} = x^{-1}a$, so $x^{-1} \in N(a)$.

N(H) is a subgroup: Let $x, y \in N(H)$. Then $(xy)H(xy)^{-1} = xyHy^{-1}x^{-1} = xHx^{-1} = H$, and $H = x^{-1}(xHx^{-1})x = x^{-1}Hx$.

C(H) is a subgroup: This is similar to the first part if you notice that $x \in N(H)$ means that x commutes with elements of H.

Z is a subgroup: This is again similar to the first case.

Q-7) Let $\phi : G \to H$ be a homomorphism between the groups G and H. Define the kernel of ϕ as ker $\phi = \{x \in G \mid \phi(x) = e_H\}$ where e_H is the identity of H. Show that ker ϕ is a normal subgroup of G.

Solution: We want to show that for every $g \in G$ and for every $h \in \ker \phi$, we must have $ghg^{-1} \in \ker \phi$. But since ϕ is a homomorphism we have $\phi(ghg^{-1}) = \phi(g)\phi(h)\phi(g^{-1}) = \phi(g)e_H\phi(g)^{-1} = e_H$, and hence the result.

Grading: Problem 6 is 40 points, the other problems are 10 points each.

Please forward any comments or questions to sertoz@bilkent.edu.tr