Math 123 - Homework 3 - Solutions

Due date: 7 January 2009 Wednesday
Please take your homework solutions to room SA144, Ali Adalı's office before 17:00.
Q-1) For a finite group G, show that if $o(G)$ is even, then there is a non-trivial element $a \in G$ such that $a^{-1}=a$.

Solution: Assume not. The inverse of every non-trivial element is non-trivial and every non-trivial element can be paired up with its inverse and this gives the count of non-trivial elements as even. Together with the trivial element e, the order of G becomes odd, a contradiction.

Q-2) Let $\phi: G \rightarrow H$ be a group homomorphism. Show that ϕ is one-to-one if and only if $\operatorname{ker} \phi=\{e\}$.

Solution: Let $a, b \in G$ be such that $\phi(a)=\phi(b)$. Then $\phi(a) \phi(b)^{-1}=e_{H}, \phi\left(a b^{-1}\right)=e_{H}$ and $a b^{-1} \in \operatorname{ker} \phi$.

If $\operatorname{ker} \phi=\{e\}$, then $a b^{-1}=e, a=b$ and ϕ is one-to-one.
If ϕ is one-to-one, then the only element mapping to e_{H} is e, so $\operatorname{ker} \phi=\{e\}$.

Q-3) Let $\phi: G \rightarrow H$ be a group homomorphism. Show that $\phi(G)$ is a subgroup of H and is isomorphic to the quotient group $G / \operatorname{ker} \phi$

Solution: That $\phi(G)$ is a subgroup follows from the fact that ϕ is a group homomorphism. For example if $\phi(a), \phi(b) \in \phi(G)$, then $\phi(a) \phi(b)=\phi(a b) \in \phi(G)$.

We know that $\operatorname{ker} \phi$ is a normal subgroup. The quotient $G / \operatorname{ker} \phi$ is then the group of right cosets of $\operatorname{ker} \phi$ in G.

For notational convenience set $K=\operatorname{ker} \phi$.
Define $\alpha: G / K \rightarrow \phi(G)$ by the rule $\alpha(K a)=\phi(a)$. This map is well defined. In other words let another representative be used for the coset $K a$, for example let $K a=K b$. Then $a b^{-1} \in K, e_{H}=\phi\left(a b^{-1}\right)=\phi(a) \phi(b)^{-1}, \phi(a)=\phi(b)$.

Clearly α is onto. Let $\alpha(K a)=\phi(a)=e_{h}$. Then $a \in K$ and $K a=K$, so α is also one-to-one, hence an isomorphism.

Q-4) Let $\theta \in S_{n}$ be a 2-cycle. Show that $\prod_{i<j}\left(x_{i}-x_{j}\right)=-\prod_{i<j}\left(x_{\theta(i)}-x_{\theta(j)}\right)$.
Solution: First observe that for any $m=1,2, \ldots, n-1$,

$$
\prod_{i<j}\left(x_{i}-x_{j}\right)=\left[\prod_{\substack{i<j \\(i, j) \neq(m, m+1)}}\left(x_{i}-x_{j}\right)\right]\left[x_{m}-x_{m+1}\right] .
$$

Now it is easy to check that if θ interchanges two consecutive indices, say $\theta=(m, m+1)$, then the claim holds.

If θ interchanges m and $m+k$, then we can consider it as first interchanging m with the neighbouring indices until m takes the place of $m+1$. It forces k sign changes by the above observation. Now to bring $m+1$ to the original place of m, θ needs $k-1$ switches and forces $k-1$ more sign changes, resulting in a net change in sign, as the claim goes.

Q-5) Let G be a finite group and H a subgroup with the property that $i(H)$ is the smallest prime p dividing the order of G. Show that H is a normal subgroup of G.
Hint: Show that G permutes the set of right cosets of H and that the kernel must be contained in H. Now use Lagrange's theorem together with the fact that no prime larger than or equal to p can divide $(p-1)$!.

Solution: Let K be the set of right cosets of H in G. The cardinality of K is $i(H)=p$. (Here $i(H)=o(G) / o(H)$ and is called the index of H in G.) The symmetric group S_{p} acts on K by simply permuting its elements. Each element of G also permutes elements of K by simply multiplying each right coset from the right and hence sending it onto another right coset, not necessarily distinct than the original one. This defines a map $\phi: G \rightarrow S_{p}$. Check that this defines a homomorphism. We know that $\phi(G)$ is a subgroup of S_{p}, so $o(G)$ divides the order of S_{p} which is $p!$.

If $a \in \operatorname{ker} \phi$. Then a leaves each right coset of H fixed, in particular $H=H a$, so $a \in H$. Hence $\operatorname{ker} \phi$ is a subgroup of H and its order must divide the order of H. Let $m o(\operatorname{ker} \phi)=o(H)$ for some positive integer m.

Since $o(H) \mid o(G), m$ must also divide the order of G. By our description of p, if q is a prime dividing m, then $q \geq p$.

We know that $\phi(G)$ is isomorphic to $G / \operatorname{ker} \phi$, so $o(\phi(G))=o(G) /(o(H) / m)=m o(G) / o(H)=$ $m i(H)=m p$. We know that this number divides p !, so $m \mid(p-1)$!.

If q is a prime dividing m, then $q \mid(p-1)$! so q is a prime strictly less than p. This contradicts what we found about q above. So no prime divides m, forcing $m=1$.

This says that $H=\operatorname{ker} \phi$ and hence is a normal subgroup since all kernels are normal.

Please forward any comments or questions to sertoz@bilkent.edu.tr

