NAME:	
STUDENT NO.	

Math	123	Abstract	Mathematics	I –	Midterm	Exam	II -	– Solution	is
TTGOIL	TIO	TIDDUIGOU	mannana	-	TATA OCT III	Linguin		Solution	10

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. A correct answer without proper reasoning may not get any credit.

Q-1) For a collection U of subsets of \mathbb{N} , we have the following property:

$$\forall x \in U, \exists y \subset x, \text{ such that } \operatorname{\mathbf{card}}(y) < \infty \text{ and } \sum_{n \in y} n \ge 0.$$

Write the negation of the above property.

Solution: The negation of the above property is

$$\exists x \in U, \text{ such that } \forall y \subset x, \text{ either } \mathbf{card}(y) = \infty \text{ or } \sum_{n \in y} n < 0.$$

NAME:

STUDENT NO:

Q-2) Find a polynomial formula, and prove it, for the sum

$$S(n) = 1 \cdot 2 + 3 \cdot 4 + \dots + (2n-1) \cdot (2n), \ n \in \mathbb{N}.$$

Solution:

For every new k, we add the term $(2k-1) \cdot (2k) = 4k^2 - 2k$. So up to n, we have 4 times the sum of squares minus 2 times the sum of integers. This gives

$$S(n) = 4 \cdot \frac{n(n+1)(2n+1)}{6} - 2 \cdot \frac{n(n+1)}{2} = \frac{1}{3} \left(n(n+1)(4n-1) \right),$$

which can now be easily proved by induction.

Q-3) Show that $\frac{1}{12}$ is a point of the Cantor set.

Solution: $12 = 9 + 3 = (110)_3$. Using long division in base 3, calculate the reciprocal of $(110)_3$ to find

$$\frac{(1)_3}{(110)_3} = 0.3002020202\dots$$

In fact, check that

$$\frac{2}{3^3} + \frac{2}{3^5} + \frac{2}{3^7} + \dots + \frac{2}{3^{2n+3}} + \dots = \frac{2}{27} \left(1 + \frac{1}{9} + \dots + \frac{1}{9^n} + \dots \right) = \frac{1}{12}$$

Since the ternary expansion of 1/12 consists of only 0s and 2s, it belongs to the Cantor set.

NAME:

STUDENT NO:

Q-4) Let P(A) denote the power set, i.e. the set of all subsets of the set A. Show that for a non-empty set A, the cardinality of P(A) is always strictly greater than that of A.

Solution: Here I take the solution verbatim from the textbook.

First observe that the function $f : A \to P(A)$ defined as $f(a) = \{a\}$ is one-to-one. Thus we see that the cardinality of A is \leq the cardinality of P(A). We need to show that there is no function from A onto P(A). Assume $g : A \to P(A)$ is an onto function. Define $B = \{a \in A \mid a \notin g(a)\}$. (The fact that you can choose such a function is due to the axiom of choice!) Since g is onto, there is an element $z \in A$ such that g(z) = B. But due to the definition of B, we have $z \in B$ if and only if $z \notin g(z) = B$. This contradiction shows that no such g can exist. Therefore, the cardinality of any non-empty set is strictly smaller then the cardinality of its power set.

NAME:

STUDENT NO:

Q-5) Find $a, b \in \mathbb{R}$ such that $(1-i)^{2009} = a + ib$, where *i* is the imaginary number satisfying $i^2 = -1$.

Solution:

$$(1-i)^{2009} = \left(\sqrt{2}e^{-i\pi/4}\right)^{2009}$$

= $2^{1004+1/2}e^{-i\pi(502+1/4)}$
= $2^{1004}\left(\sqrt{2}e^{-\pi i/4}\right)$
= $2^{1004}(1-i).$

Hence $a = -b = 2^{1008}$.