Date: December 19, 2008, Friday
Time: 10:40-12:30
Ali Sinan Sertöz

NAME: \qquad
STUDENT NO: \qquad

Math 123 Abstract Mathematics I - Midterm Exam II - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. A correct answer without proper reasoning may not get any credit.

Q-1) For a collection U of subsets of \mathbb{N}, we have the following property:

$$
\forall x \in U, \exists y \subset x, \text { such that } \operatorname{card}(y)<\infty \text { and } \sum_{n \in y} n \geq 0 .
$$

Write the negation of the above property.
Solution: The negation of the above property is

$$
\exists x \in U \text {, such that } \forall y \subset x, \text { either } \operatorname{card}(y)=\infty \text { or } \sum_{n \in y} n<0 .
$$

Q-2) Find a polynomial formula, and prove it, for the sum

$$
S(n)=1 \cdot 2+3 \cdot 4+\cdots+(2 n-1) \cdot(2 n), n \in \mathbb{N}
$$

Solution:

For every new k, we add the term $(2 k-1) \cdot(2 k)=4 k^{2}-2 k$. So up to n, we have 4 times the sum of squares minus 2 times the sum of integers. This gives

$$
S(n)=4 \cdot \frac{n(n+1)(2 n+1)}{6}-2 \cdot \frac{n(n+1)}{2}=\frac{1}{3}(n(n+1)(4 n-1)),
$$

which can now be easily proved by induction.

Q-3) Show that $\frac{1}{12}$ is a point of the Cantor set.
Solution: $12=9+3=(110)_{3}$. Using long division in base 3, calculate the reciprocal of $(110)_{3}$ to find

$$
\frac{(1)_{3}}{(110)_{3}}=0.3002020202 \ldots
$$

In fact, check that

$$
\frac{2}{3^{3}}+\frac{2}{3^{5}}+\frac{2}{3^{7}}+\cdots \frac{2}{3^{2 n+3}}+\cdots=\frac{2}{27}\left(1+\frac{1}{9}+\cdots+\frac{1}{9^{n}}+\cdots\right)=\frac{1}{12} .
$$

Since the ternary expansion of $1 / 12$ consists of only 0 s and 2 s , it belongs to the Cantor set.

Q-4) Let $P(A)$ denote the power set, i.e. the set of all subsets of the set A. Show that for a non-empty set A, the cardinality of $P(A)$ is always strictly greater than that of A.

Solution: Here I take the solution verbatim from the textbook.
First observe that the function $f: A \rightarrow P(A)$ defined as $f(a)=\{a\}$ is one-to-one. Thus we see that the cardinality of A is \leq the cardinality of $P(A)$. We need to show that there is no function from A onto $P(A)$. Assume $g: A \rightarrow P(A)$ is an onto function. Define $B=\{a \in A \mid a \notin g(a)\}$. (The fact that you can choose such a function is due to the axiom of choice!) Since g is onto, there is an element $z \in A$ such that $g(z)=B$. But due to the definition of B, we have $z \in B$ if and only if $z \notin g(z)=B$. This contradiction shows that no such g can exist. Therefore, the cardinality of any non-empty set is strictly smaller then the cardinality of its power set.

Q-5) Find $a, b \in \mathbb{R}$ such that $(1-i)^{2009}=a+i b$, where i is the imaginary number satisfying $i^{2}=-1$.

Solution:

$$
\begin{aligned}
(1-i)^{2009} & =\left(\sqrt{2} e^{-i \pi / 4}\right)^{2009} \\
& =2^{1004+1 / 2} e^{-i \pi(502+1 / 4)} \\
& =2^{1004}\left(\sqrt{2} e^{-\pi i / 4}\right) \\
& =2^{1004}(1-i) .
\end{aligned}
$$

Hence $a=-b=2^{1008}$.

