\qquad
\qquad

Math 124 Abstract Mathematics II - Midterm Exam II - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit. After the exam check the course web page for solutions.

Q-1) Let L_{1} and L_{2} be two parallel lines in \mathbb{R}^{2}. Explain what it means for these two lines to meet at infinity. Using coordinates of your choice show exactly where they meet.

Solution: Two parallel lines L_{1} and L_{2} in \mathbb{R}^{2} are given by $a X+b Y+c_{i}=0$ where $(a, b) \neq(0,0)$, and $c_{1} \neq c_{2}$. Assume without loss of generality that $a \neq 0$. Consider the embedding of \mathbb{R}^{2} into \mathbb{P}^{2} by the map $(X, Y) \rightarrow[X: Y: 1]$ where $[x: y: z]$ are homogeneous coordinates in \mathbb{P}^{2}. Then the images of these parallel lines satisfy the homogeneous equations $a x+b y+c_{i} z=0, i=1,2$. Let $[s: t] \in \mathbb{P}^{1}$ with $0=[0: 1]$ and $\infty=[1: 0]$. Then these lines can be parameterized in \mathbb{P}^{2} as $[s: t] \rightarrow\left[t c_{i}-s b: s a:-t a\right]$. They meet when $t=0$, which is the point $[-b: a: 0]$ and corresponds to a point on the line at infinity in \mathbb{P}^{2} with respect to the chart we chose. Notice that this points represents the common slope of the parallel lines.

The key ingredients of this answer are:
(i) writing equation of parallel lines in affine plane.
(ii) projective closure of the affine plane in the projective plane.
(iii) parameterizing a line by \mathbb{P}^{1}.
(iv) recognizing the line at infinity and the points on it.
(v) interpreting the point of intersection as the common slope.

Q-2) Define the cross-ratio of four distinct and ordered numbers $z_{1}, z_{2}, z_{3}, z_{4}$ as the image of z_{4} under the unique linear fractional transformation which sends z_{1}, z_{2}, z_{3} to $0, \infty, 1$ respectively, and denote it by $\left\langle z_{1}, z_{2}, z_{3}, z_{4}\right\rangle$.
(i) Find the cross-ratio $\langle 1,2,3,4\rangle$.
(ii) Prove or disprove that there exists a linear fractional transformation $T(z)=\frac{a z+b}{c z+d}$ such that $\langle 1,2,3,4\rangle \neq\langle T(1), T(2), T(3), T(4)\rangle$.

Solution: Observe that $\left\langle z_{1}, z_{2}, z_{3}, z\right\rangle=\frac{z-z_{1}}{z-z_{2}} \cdot \frac{z_{3}-z_{2}}{z_{3}-z_{1}}$.
Then $\langle 1,2,3,4\rangle=\frac{4-1}{4-2} \cdot \frac{3-2}{3-1}=\frac{3}{4}$.
Let ϕ be the unique linear fractional transformation sending z_{1}, z_{2}, z_{3} to $0, \infty, 1$ respectively. Then $\left\langle z_{1}, z_{2}, z_{3}, z_{4}\right\rangle=\phi\left(z_{4}\right)$ by definition of cross-ratio. Similarly let ψ be the unique linear fractional transformation sending $T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right)$ to $0, \infty, 1$ respectively. Then $\left\langle T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right), T\left(z_{4}\right)\right\rangle=\psi\left(T\left(z_{4}\right)\right)$ again by definition of cross-ratio.

Now observe that $\psi \circ T$ is a linear fractional transformation sending z_{1}, z_{2}, z_{3} to $0, \infty, 1$ respectively. By uniqueness of ϕ we must have $\psi \circ T=\phi$. This gives $\psi\left(T\left(z_{4}\right)\right)=\phi\left(z_{4}\right)$, or equivalently $\left\langle z_{1}, z_{2}, z_{3}, z_{4}\right\rangle=\left\langle T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right), T\left(z_{4}\right)\right\rangle$. Thus the cross-ratio is invariant under linear fractional transformations, and the above statement given in the problem is false.

Q-3) Let r, k, n be positive integers satisfying $0<r<k<n$. Let $G(k, n)$ be the space of all k-dimensional vector subspaces of \mathbb{R}^{n}, and for a fixed r-dimensional vector subspace V_{r} of \mathbb{R}^{n} define $G\left(V_{r}\right)$ as the space of all k-dimensional vector subspaces of \mathbb{R}^{n} containing V_{r}. Notice that $G\left(V_{r}\right) \subset G(k, n)$.
(i) Find $\operatorname{dim} G(k, n)$.
(ii) Find $\operatorname{dim} G\left(V_{r}\right)$.

Solution: Any $V \in G(k, n)$ is spanned by k linearly independent vectors, entries of which form a $k \times n$ matrix

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k n}
\end{array}\right) .
$$

Since these k rows are linearly independent, there exist k columns which form an invertible matrix. Assume without loss of generality that these are the first k columns. Then multiplying the above matrix with the inverse of the matrix formed by the first k columns gives

$$
\left(\begin{array}{ccccccc}
1 & 0 & \cdots & 0 & b_{11} & \cdots & b_{1 n-k} \\
0 & 1 & \cdots & 0 & b_{21} & \cdots & b_{2 n-k} \\
\vdots & & \ddots & & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1 & b_{k 1} & \cdots & b_{k n-k}
\end{array}\right) .
$$

This shows that there are $k(n-k)$ free parameters, hence $\operatorname{dim} G(k, n)=k(n-k)$.
As for the dimension of $G\left(V_{r}\right)$, write $\mathbb{R}^{n}=V_{r} \bigoplus V_{R}^{\perp}$, where V_{r}^{\perp} is the orthogonal complement of V_{r} in \mathbb{R}^{n}. Note that $\operatorname{dim} V_{r}^{\perp}=n-r$. Let U be any $(k-r)$-dimensional vector subspace of V_{r}^{\perp}. If we define $V=V_{r} \bigoplus U$, then clearly $V \in G\left(V_{r}\right)$. Conversely for any $V \in G\left(V_{r}\right)$, write $V=V_{r} \bigoplus U$ where U is the orthogonal complement of V_{r} in V. Then clearly U is a $(k-r)$-dimensional vector subspace of V_{r}^{\perp}.

Thus there is a one-to-one correspondence between the elements of $G\left(V_{r}\right)$ and the $(k-r)$ dimensional subspaces of the $(n-r)$-dimensional vector space V_{r}^{\perp}. We just proved in the first part that this latter space has dimension $(k-r)[(n-r)-(k-r)]=(k-r)(n-k)$, which is now the dimension of $G\left(V_{r}\right)$.

Q-4) Prove or disprove: For any finite subset A of \mathbb{P}^{n} we can find a hyperplane H of \mathbb{P}^{n} such that $H \cap A=\emptyset$.

Solution: We will construct this hyperplane in $n-1$ steps.
Step 0: Let V_{0} be a point in \mathbb{P}^{n} disjoint from A. If $n=1$, then $H=V_{0}$. If $n>1$, then apply Step 1.

Step k, for $k>0$, is described as follows:
Assume that we have constructed linear subspaces $V_{0} \subset V_{1} \subset \cdots \subset V_{k-1}$ of \mathbb{P}^{n} such that $V_{k-1} \cap A=\emptyset$, and $n>k$. Then we have

Step k: Let V_{k} be a linear subspace of \mathbb{P}^{n}, containing V_{k-1} and different than any of the finitely many linear subspaces $\operatorname{span}\left\{V_{k-1}, p\right\}$, where $p \in A$. It is possible to make this choice since the dimension of the space of all k-linear subspaces of \mathbb{P}^{n} containing V_{k-1}, which is the dimension of the space of all $(k+1)$-dimensional vector subspaces of \mathbb{R}^{n+1} containing a fixed k-dimensional vector subspace, is $n-k>0$. Hence there are infinitely many k-dimensional linear subspaces of \mathbb{P}^{n} containing V_{k-1} and only finitely many of them are bad. If $n=k+1$, then $H=V_{k}$. If $n>k+1$, then apply Step $k+1$.

This process clearly stops and produces the required H, since n is fixed and is finite.

