NAME:	
STUDENT NO	

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit. After the exam check the course web page for solutions.

Q-1) Let L_1 and L_2 be two parallel lines in \mathbb{R}^2 . Explain what it means for these two lines to meet at infinity. Using coordinates of your choice show exactly where they meet.

Solution: Two parallel lines L_1 and L_2 in \mathbb{R}^2 are given by $aX + bY + c_i = 0$ where $(a, b) \neq (0, 0)$, and $c_1 \neq c_2$. Assume without loss of generality that $a \neq 0$. Consider the embedding of \mathbb{R}^2 into \mathbb{P}^2 by the map $(X, Y) \rightarrow [X : Y : 1]$ where [x : y : z] are homogeneous coordinates in \mathbb{P}^2 . Then the images of these parallel lines satisfy the homogeneous equations $ax + by + c_i z = 0$, i = 1, 2. Let $[s : t] \in \mathbb{P}^1$ with 0 = [0 : 1] and $\infty = [1 : 0]$. Then these lines can be parameterized in \mathbb{P}^2 as $[s : t] \rightarrow [tc_i - sb : sa : -ta]$. They meet when t = 0, which is the point [-b : a : 0] and corresponds to a point on the line at infinity in \mathbb{P}^2 with respect to the chart we chose. Notice that this points represents the common slope of the parallel lines.

The key ingredients of this answer are:

- (i) writing equation of parallel lines in affine plane.
- (ii) projective closure of the affine plane in the projective plane.
- (iii) parameterizing a line by \mathbb{P}^1 .
- (iv) recognizing the line at infinity and the points on it.
- (v) interpreting the point of intersection as the common slope.

NAME:

STUDENT NO:

Q-2) Define the cross-ratio of four distinct and ordered numbers z₁, z₂, z₃, z₄ as the image of z₄ under the unique linear fractional transformation which sends z₁, z₂, z₃ to 0, ∞, 1 respectively, and denote it by (z₁, z₂, z₃, z₄).
(i) Find the cross-ratio (1, 2, 3, 4).

(ii) Prove or disprove that there exists a linear fractional transformation $T(z) = \frac{az+b}{cz+d}$ such that $\langle 1, 2, 3, 4 \rangle \neq \langle T(1), T(2), T(3), T(4) \rangle$.

Solution: Observe that $\langle z_1, z_2, z_3, z \rangle = \frac{z - z_1}{z - z_2} \cdot \frac{z_3 - z_2}{z_3 - z_1}$. Then $\langle 1, 2, 3, 4 \rangle = \frac{4 - 1}{4 - 2} \cdot \frac{3 - 2}{3 - 1} = \frac{3}{4}$.

Let ϕ be the unique linear fractional transformation sending z_1, z_2, z_3 to $0, \infty, 1$ respectively. Then $\langle z_1, z_2, z_3, z_4 \rangle = \phi(z_4)$ by definition of cross-ratio. Similarly let ψ be the unique linear fractional transformation sending $T(z_1), T(z_2), T(z_3)$ to $0, \infty, 1$ respectively. Then $\langle T(z_1), T(z_2), T(z_3), T(z_4) \rangle = \psi(T(z_4))$ again by definition of cross-ratio.

Now observe that $\psi \circ T$ is a linear fractional transformation sending z_1, z_2, z_3 to $0, \infty, 1$ respectively. By uniqueness of ϕ we must have $\psi \circ T = \phi$. This gives $\psi(T(z_4)) = \phi(z_4)$, or equivalently $\langle z_1, z_2, z_3, z_4 \rangle = \langle T(z_1), T(z_2), T(z_3), T(z_4) \rangle$. Thus the cross-ratio is invariant under linear fractional transformations, and the above statement given in the problem is false.

NAME:

STUDENT NO:

- **Q-3)** Let r, k, n be positive integers satisfying 0 < r < k < n. Let G(k, n) be the space of all k-dimensional vector subspaces of \mathbb{R}^n , and for a fixed r-dimensional vector subspace V_r of \mathbb{R}^n define $G(V_r)$ as the space of all k-dimensional vector subspaces of \mathbb{R}^n containing V_r . Notice that $G(V_r) \subset G(k, n)$.
 - (i) Find dim G(k, n).
 - (ii) Find dim $G(V_r)$.

Solution: Any $V \in G(k, n)$ is spanned by k linearly independent vectors, entries of which form a $k \times n$ matrix

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{pmatrix}.$$

Since these k rows are linearly independent, there exist k columns which form an invertible matrix. Assume without loss of generality that these are the first k columns. Then multiplying the above matrix with the inverse of the matrix formed by the first k columns gives

(1)	0	•••	0	b_{11}	• • •	b_{1n-k}	
0	1	•••	0	b_{21}	• • •	$b_{2 n-k}$	
:		۰.		:	•••	:	•
$\left(0 \right)$	0	•••	1	b_{k1}	• • •	$b_{k n-k}$	

This shows that there are k(n-k) free parameters, hence dim G(k, n) = k(n-k).

As for the dimension of $G(V_r)$, write $\mathbb{R}^n = V_r \bigoplus V_R^{\perp}$, where V_r^{\perp} is the orthogonal complement of V_r in \mathbb{R}^n . Note that dim $V_r^{\perp} = n - r$. Let U be any (k - r)-dimensional vector subspace of V_r^{\perp} . If we define $V = V_r \bigoplus U$, then clearly $V \in G(V_r)$. Conversely for any $V \in G(V_r)$, write $V = V_r \bigoplus U$ where U is the orthogonal complement of V_r in V. Then clearly U is a (k - r)-dimensional vector subspace of V_r^{\perp} .

Thus there is a one-to-one correspondence between the elements of $G(V_r)$ and the (k-r)dimensional subspaces of the (n-r)-dimensional vector space V_r^{\perp} . We just proved in the first part that this latter space has dimension (k-r)[(n-r) - (k-r)] = (k-r)(n-k), which is now the dimension of $G(V_r)$.

STUDENT NO:

Q-4) Prove or disprove: For any finite subset A of \mathbb{P}^n we can find a hyperplane H of \mathbb{P}^n such that $H \cap A = \emptyset$.

Solution: We will construct this hyperplane in n-1 steps.

Step 0: Let V_0 be a point in \mathbb{P}^n disjoint from A. If n = 1, then $H = V_0$. If n > 1, then apply Step 1.

Step k, for k > 0, is described as follows:

Assume that we have constructed linear subspaces $V_0 \subset V_1 \subset \cdots \subset V_{k-1}$ of \mathbb{P}^n such that $V_{k-1} \cap A = \emptyset$, and n > k. Then we have

Step k: Let V_k be a linear subspace of \mathbb{P}^n , containing V_{k-1} and different than any of the finitely many linear subspaces $\operatorname{span}\{V_{k-1}, p\}$, where $p \in A$. It is possible to make this choice since the dimension of the space of all k-linear subspaces of \mathbb{P}^n containing V_{k-1} , which is the dimension of the space of all (k + 1)-dimensional vector subspaces of \mathbb{R}^{n+1} containing a fixed k-dimensional vector subspace, is n - k > 0. Hence there are infinitely many k-dimensional linear subspaces of \mathbb{P}^n containing V_{k-1} and only finitely many of them are bad. If n = k + 1, then $H = V_k$. If n > k + 1, then apply Step k + 1.

This process clearly stops and produces the required H, since n is fixed and is finite.