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Please do not write anything inside the above boxes!

PLEASE READ:
Check that there are 4 questions on your exam booklet. Write your name on top of every page.
Show your work in reasonable detail. A correct answer without proper or too much reasoning
may not get any credit. After the exam check the course web page for solutions.

Q-1) Let L1 and L2 be two parallel lines in R2. Explain what it means for these two lines
to meet at infinity. Using coordinates of your choice show exactly where they meet.

Solution: Two parallel lines L1 and L2 in R2 are given by aX + bY + ci = 0 where
(a, b) 6= (0, 0), and c1 6= c2. Assume without loss of generality that a 6= 0. Consider
the embedding of R2 into P2 by the map (X, Y ) → [X : Y : 1] where [x : y : z]
are homogeneous coordinates in P2. Then the images of these parallel lines satisfy the
homogeneous equations ax + by + ciz = 0, i = 1, 2. Let [s : t] ∈ P1 with 0 = [0 : 1] and
∞ = [1 : 0]. Then these lines can be parameterized in P2 as [s : t] → [tci − sb : sa : −ta].
They meet when t = 0, which is the point [−b : a : 0] and corresponds to a point on the
line at infinity in P2 with respect to the chart we chose. Notice that this points represents
the common slope of the parallel lines.

The key ingredients of this answer are:
(i) writing equation of parallel lines in affine plane.
(ii) projective closure of the affine plane in the projective plane.
(iii) parameterizing a line by P1.
(iv) recognizing the line at infinity and the points on it.
(v) interpreting the point of intersection as the common slope.
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Q-2) Define the cross-ratio of four distinct and ordered numbers z1, z2, z3, z4 as the image
of z4 under the unique linear fractional transformation which sends z1, z2, z3 to 0,∞, 1
respectively, and denote it by 〈z1, z2, z3, z4〉.
(i) Find the cross-ratio 〈1, 2, 3, 4〉.
(ii) Prove or disprove that there exists a linear fractional transformation T (z) =

az + b

cz + d
such that 〈1, 2, 3, 4〉 6= 〈T (1), T (2), T (3), T (4)〉.

Solution: Observe that 〈z1, z2, z3, z〉 =
z − z1

z − z2

· z3 − z2

z3 − z1

.

Then 〈1, 2, 3, 4〉 =
4− 1

4− 2
· 3− 2

3− 1
=

3

4
.

Let φ be the unique linear fractional transformation sending z1, z2, z3 to 0,∞, 1 respec-
tively. Then 〈z1, z2, z3, z4〉 = φ(z4) by definition of cross-ratio. Similarly let ψ be the
unique linear fractional transformation sending T (z1), T (z2), T (z3) to 0,∞, 1 respectively.
Then 〈T (z1), T (z2), T (z3), T (z4)〉 = ψ(T (z4)) again by definition of cross-ratio.

Now observe that ψ ◦ T is a linear fractional transformation sending z1, z2, z3 to 0,∞, 1
respectively. By uniqueness of φ we must have ψ ◦T = φ. This gives ψ(T (z4)) = φ(z4), or
equivalently 〈z1, z2, z3, z4〉 = 〈T (z1), T (z2), T (z3), T (z4)〉. Thus the cross-ratio is invariant
under linear fractional transformations, and the above statement given in the problem is
false.
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Q-3) Let r, k, n be positive integers satisfying 0 < r < k < n. Let G(k, n) be the space of all
k-dimensional vector subspaces of Rn, and for a fixed r-dimensional vector subspace Vr

of Rn define G(Vr) as the space of all k-dimensional vector subspaces of Rn containing
Vr. Notice that G(Vr) ⊂ G(k, n).
(i) Find dim G(k, n).
(ii) Find dim G(Vr).

Solution: Any V ∈ G(k, n) is spanned by k linearly independent vectors, entries of
which form a k × n matrix




a11 a12 · · · a1n
...

...
...

ak1 ak2 · · · akn


 .

Since these k rows are linearly independent, there exist k columns which form an invertible
matrix. Assume without loss of generality that these are the first k columns. Then
multiplying the above matrix with the inverse of the matrix formed by the first k columns
gives




1 0 · · · 0 b11 · · · b1 n−k

0 1 · · · 0 b21 · · · b2 n−k
...

. . .
... · · · ...

0 0 · · · 1 bk1 · · · bk n−k


 .

This shows that there are k(n− k) free parameters, hence dim G(k, n) = k(n− k).

As for the dimension of G(Vr), write Rn = Vr

⊕
V ⊥

R , where V ⊥
r is the orthogonal comple-

ment of Vr in Rn. Note that dim V ⊥
r = n − r. Let U be any (k − r)-dimensional vector

subspace of V ⊥
r . If we define V = Vr

⊕
U , then clearly V ∈ G(Vr). Conversely for any

V ∈ G(Vr), write V = Vr

⊕
U where U is the orthogonal complement of Vr in V . Then

clearly U is a (k − r)-dimensional vector subspace of V ⊥
r .

Thus there is a one-to-one correspondence between the elements of G(Vr) and the (k−r)-
dimensional subspaces of the (n− r)-dimensional vector space V ⊥

r . We just proved in the
first part that this latter space has dimension (k− r)[(n− r)− (k− r)] = (k− r)(n− k),
which is now the dimension of G(Vr).
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Q-4) Prove or disprove: For any finite subset A of Pn we can find a hyperplane H of Pn

such that H ∩ A = ∅.
Solution: We will construct this hyperplane in n− 1 steps.

Step 0: Let V0 be a point in Pn disjoint from A. If n = 1, then H = V0. If n > 1, then
apply Step 1.

Step k, for k > 0, is described as follows:

Assume that we have constructed linear subspaces V0 ⊂ V1 ⊂ · · · ⊂ Vk−1 of Pn such that
Vk−1 ∩ A = ∅, and n > k. Then we have

Step k: Let Vk be a linear subspace of Pn, containing Vk−1 and different than any of the
finitely many linear subspaces span{Vk−1, p}, where p ∈ A. It is possible to make this
choice since the dimension of the space of all k-linear subspaces of Pn containing Vk−1,
which is the dimension of the space of all (k + 1)-dimensional vector subspaces of Rn+1

containing a fixed k-dimensional vector subspace, is n− k > 0. Hence there are infinitely
many k-dimensional linear subspaces of Pn containing Vk−1 and only finitely many of them
are bad. If n = k + 1, then H = Vk. If n > k + 1, then apply Step k + 1.

This process clearly stops and produces the required H, since n is fixed and is finite.


