Due Date: 17 October 2015, Saturday Time: TBA
Instructor: Ali Sinan Sertöz

\qquad

Math 202 Complex Analysis - Midterm Exam I - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{3}$ questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Find all $z \in \mathbb{C}$ such that $z^{3}=i$. Write your answer in the rectangular form $x+i y$, where x and y are real numbers.

Solution:

We have $z^{3}=i=e^{i\left(\frac{\pi}{2}+2 n \pi\right)}$, for $n \in \mathbb{Z}$.
Therefore $z=e^{i\left(\frac{\pi}{6}+\frac{2 \pi}{3} n\right)}$, for $n=0,1,2$.
For $n=0$ we have $z_{0}=e^{i \frac{\pi}{6}}=\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}=\frac{\sqrt{3}}{2}+i \frac{1}{2}$.
For $n=1$ we have $z_{1}=e^{i\left(\frac{\pi}{6}+\frac{2 \pi}{3}\right)}=e^{i \frac{5 \pi}{6}}=\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}=-\frac{\sqrt{3}}{2}+i \frac{1}{2}$.
For $n=2$ we have $z_{2}=e^{i\left(\frac{\pi}{6}+\frac{4 \pi}{3}\right)}=e^{i \frac{9 \pi}{6}}=e^{i \frac{3 \pi}{2}}=\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}=-i$.

Q-2) Calculate $\frac{(\sqrt{3}+i)^{67}}{(1+i)^{113}}$. Write your answer in the rectangular form $x+i y$, where x and y are real numbers.

Solution:

We first note that $(\sqrt{3}+i)=2 e^{i \frac{\pi}{6}}$, and $(1+i)=2^{1 / 2} e^{i \frac{\pi}{4}}$. Hence we have

$$
(\sqrt{3}+i)^{67}=\left(2 e^{i \frac{\pi}{6}}\right)^{67}=2^{67} e^{i \frac{67 \pi}{6}}=2^{67} e^{i\left(5 \cdot 2 \pi+\pi+\frac{\pi}{6}\right)}=-2^{67}\left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)=-2^{66}(\sqrt{3}+i) .
$$

Similarly we have

$$
(1+i)^{113}=\left(2^{\frac{1}{2}} e^{i \frac{\pi}{4}}\right)^{113}=2^{\frac{113}{2}} e^{i \frac{113 \pi}{4}}=2^{\frac{113}{2}} e^{i\left(14 \cdot 2 \pi+\frac{\pi}{4}\right)}=2^{\frac{113}{2}}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=2^{56}(1+i)
$$

Finally we have

$$
\frac{(\sqrt{3}+i)^{67}}{(1+i)^{113}}=\frac{-2^{66}(\sqrt{3}+i)}{2^{56}(1+i)}=-2^{10} \frac{\sqrt{3}+1}{1+i}=-2^{10} \frac{\sqrt{3}+1}{1+i} \frac{1-i}{1-i}=-2^{9}(\sqrt{3}+1)+i 2^{9}(\sqrt{3}-1) .
$$

This is approximately equal to $(-1398.81+374.81 i)$. In polar coordinates we have $r \approx 1448.15$ and $\theta \approx 165^{\circ}$.

Q-3) Calculate the principal value of $(1+i)^{(1+i)}$. Write your answer in the rectangular form $x+i y$, where x and y are real numbers.

Solution:

The principal value corresponds in using sheet 0 for the logarithm function. In particular we have

$$
(1+i)^{(1+i)}=\exp [(1+i) \log (1+i)]=\exp \left[(1+i) \log \left(\sqrt{2} e^{i \frac{\pi}{4}}\right)\right]=\exp \left[(1+i)\left(\ln \sqrt{2}+i \frac{\pi}{4}\right)\right]
$$

Multiplying out we have
$(1+i)^{(1+i)}=\exp \left[\left(\ln \sqrt{2}-\frac{\pi}{4}\right)+i\left(\ln \sqrt{2}+\frac{\pi}{4}\right)\right]=\exp \left[\ln \sqrt{2}-\frac{\pi}{4}\right] \cos \left(\ln \sqrt{2}+\frac{\pi}{4}\right)+i \exp \left[\ln \sqrt{2}-\frac{\pi}{4}\right] \sin \left(\ln \sqrt{2}+\frac{\pi}{4}\right)$.
This is approximately $(0.27+0.58 i)$. In polar coordinates we have $r \approx 0.64$ and $\theta \approx 65^{\circ}$.

Q-4) Consider the function $f(z)=\cosh x \cos y+i \sinh x \sin y$ from the $z=x+i y$ plane to the $w=u+i v$ plane. Describe the image of the following lines under the action of f.
(a) $y=0$.
(b) $y=\pi / 2$.
(c) $y=\pi$.
(d) $y=y_{0}$, where $0<y_{0}<\pi / 2$.
(e) $y=y_{0}$, where $\pi / 2<y_{0}<\pi$.

Solution:

We have $u=\cosh x \cos y$ and $v=\sinh x \sin y$. When $y=0$, we see that f maps the x-axis to the u axis, but we must have $u \geq 1$. A careful analysis shows that we must have a cut in the w-plane along the u-axis from $u=1$ to $+\infty$. The line $x \geq 0$ is mapped to the upper part of the cut, and the $x \leq 0$ is mapped to the lower part.

Similarly we cut the w-plane along the u-axis from $u=-1$ to $-\infty$, and the line $y=\pi, x \geq 0$ is mapped to the upper part of the cut while the line $y=\pi, x \leq 0$ is mapped to the lower part.

The line $y=\pi / 2$ is mapped in a one-to-one onto manner to the v-axis.
When $y=y_{0}$ and $y_{0} \neq 0, \pi / 2, \pi$, we can write $\left(\frac{u}{\cos y_{0}}\right)^{2}-\left(\frac{v}{\sin y_{0}}\right)^{2}=1$. This is the equation of a hyperbola which intersects the u-axis orthogonally at $\left(\cos y_{0}, 0\right)$. The hyperbola lies in the $u>0$ half-plane if $0<y_{0}<\pi / 2$, and on the $u<0$ half-plane if $\pi / 2<y_{0}<\pi$.

Q-5) The cross-ratio of four distinct numbers $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C} \cup\{\infty\}$ is the image $T\left(z_{4}\right)$, where $T(z)=\frac{a z+b}{c z+d}$ is the Mobius transformation mapping z_{1} to $0, z_{2}$ to 1 and z_{3} to ∞. Here $a, b, c, d \in \mathbb{C}$ and $a d-b c \neq 0$.
(a) Find the cross-ratio of $0,1, \infty, 57+89 i$.
(b) Find the cross-ratio of $1,2,3, i$.

Solution:

(a) If $T(0)=0, T(1)=1$ and $T(\infty)=\infty$, then T is the identity transformation since it fixes three points. Then $T(57+89 i)=57+89 i$.
(b) The transformation T which gives the cross-ratio of z, z_{1}, z_{2}, z_{3} is given by

$$
T(z)=\frac{z-z_{1}}{z-z_{3}} \frac{z_{2}-z_{3}}{z_{2}-z_{1}} .
$$

In our case we have $z_{1}=1, z_{2}=2, z_{3}=3$. So we have

$$
T(z)=\frac{z-1}{z-3} \frac{2-3}{2-1}=-\frac{z-1}{z-3} .
$$

The required cross-ratio is then

$$
T(i)=-\frac{i-1}{i-3}=-\frac{(i-1)}{(i-3)} \frac{(-i-3)}{(-i-3)}=-\frac{2}{5}+i \frac{1}{5} .
$$

