\qquad

Math 202 Complex Analysis - Midterm Exam II - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{5}$ questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Cauchy-Riemann Equations: If $f(z)=u(x, y)+i v(x, y)$ is holomorphic on a domain, then at every point of that domain we have

$$
u_{x}=v_{y}, \quad \text { and } \quad u_{y}=-v_{x} .
$$

In polar coordinates, taking $z=x+i y=r e^{i \theta}$, these equations have the form

$$
r u_{r}=v_{\theta}, \quad \text { and } \quad u_{\theta}=-r v_{r} .
$$

Moreover we have

$$
f^{\prime}(z)=u_{x}+i v_{x}=e^{-i \theta}\left(u_{r}+i v_{r}\right) .
$$

Cauchy-Goursat Theorem: If f is holomorphic on and inside of the closed contour C, then

$$
\int_{C} f(z) d z=0
$$

Cauchy Integral Formula: If f is holomorphic on and inside of the closed contour C, and if z_{0} lies inside C, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} d z
$$

Moreover, if n is a positive integer, then

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z .
$$

Geometric Series: $\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}$ for $|z|<1$.

Q-1) The transformation T which gives the cross-ratio of z, z_{1}, z_{2}, z_{3} is given by

$$
T(z)=\frac{z-z_{1}}{z-z_{3}} \frac{z_{2}-z_{3}}{z_{2}-z_{1}} .
$$

(a) Calculate $T(1+i,-2 i, 1,4 i)$.
(b) Do the points $1+i,-2 i, 1,4 i$ lie on a circle?

Solution:

(a)

If you take $T\left(z ; z_{1}, z_{2}, z_{3}\right)=\frac{z-z_{1}}{z-z_{3}} \frac{z_{2}-z_{3}}{z_{2}-z_{1}}$, then a straightforward calculation gives

$$
T(1+i,-2 i, 1,4 i)=\frac{46}{25}+\frac{3}{25} i
$$

However, if you take $T\left(z_{1}, z_{2}, z_{3} ; z\right)=\frac{z-z_{1}}{z-z_{3}} \frac{z_{2}-z_{3}}{z_{2}-z_{1}}$, then a straightforward calculation gives

$$
T(1+i,-2 i, 1,4 i)=\frac{46}{85}-\frac{3}{85} i=\left(\frac{46}{25}+\frac{3}{25} i\right)^{-1}
$$

(b)

Four points lie on a circle if and only if their cross-ratio is real. Here the cross-ratio is not real, so these points do not lie on a circle. (No need to do geometric investigation once this cross-ratio is calculated!)

Q-2) Calculate the following numbers and write your answer in the rectangular form, i.e. as $x+i y$.
(a) $\left(\frac{2}{\sqrt{2}}+i \frac{2}{\sqrt{2}}\right)^{2015}$
(b) $\left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)^{2015}$
(c) $\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{2015}$
(d) i^{2015}

Solution:

(a)

Note that $2015=8 \times 251+7$. Hence

$$
\left(\frac{2}{\sqrt{2}}+i \frac{2}{\sqrt{2}}\right)^{2015}=2^{2015}\left(e^{i \frac{\pi}{4}}\right)^{8 \times 251+7}=2^{2015} e^{i \frac{7 \pi}{4}}=\frac{2^{2015}}{\sqrt{2}}-i \frac{2^{2015}}{\sqrt{2}} .
$$

(b)

Here $2015=12 \times 167+11$. Hence

$$
\left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)^{2015}=\left(e^{i \frac{\pi}{6}}\right)^{12 \times 167+11}=e^{i \frac{11 \pi}{6}}=\frac{\sqrt{3}}{2}-i \frac{1}{2}
$$

(c)

Here $2015=6 \times 335+5$. Hence

$$
\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{2015}=\left(e^{i \frac{\pi}{3}}\right)^{6 \times 335+5}=e^{i \frac{5 \pi}{3}}=\frac{1}{2}-i \frac{\sqrt{3}}{2} .
$$

(d)

Here $2015=4 \times 503+3$. Hence

$$
i^{2015}=i^{4 \times 503+3}=i^{3}=-i
$$

Q-3) Evaluate the integral $\int_{C} \frac{z^{2}}{(z-1)(z-2)(z-3)} d z$, where C is the contour given below.
(a) $|z|=1 / 2$.
(b) $|z|=3 / 2$.
(c) $|z|=5 / 2$.
(d) $|z|=7 / 2$

Solution:

As a preparation for the solution set
$f(z)=\frac{z^{2}}{(z-1)(z-2)(z-3)}, f_{1}(z)=\frac{z^{2}}{(z-2)(z-3)}, f_{2}(z)=\frac{z^{2}}{(z-1)(z-3)}, f_{3}(z)=\frac{z^{2}}{(z-1)(z-2)}$.
Moreover let C_{k} be the circle with center k and radius $1 / 2$, for $k=1,2,3$.. Now set

$$
J=\int_{C} \frac{z^{2}}{(z-1)(z-2)(z-3)} d z, \quad \text { and } \quad J_{k}=\int_{C_{k}} \frac{f_{k}(z)}{z-k} d z, \text { for } k=1,2,3
$$

Note that we have

$$
f(z)=\frac{f_{k}(z)}{z-k} \text { for } k=1,2,3 .
$$

Now we are ready for the solution.
(a)

Inside $|z|=1 / 2, f$ is holomorphic, so by Cauchy-Goursat theorem we have $J=0$.
(b)

Inside $|z|=3 / 2$, the only singularity of f is at $z=1$, so by Cauchy Integral Formula we have

$$
J=J_{1}=2 \pi i f_{1}(1)=(2 \pi i)\left(\frac{1}{2}\right)=\pi i .
$$

(c)

Inside $|z|=5 / 2$, the singularities of f are at $z=1$ and at $z=2$, so by Cauchy Integral Formula we have

$$
J=J_{1}+J_{2}=2 \pi i\left[f_{1}(1)+f_{2}(2)\right]=(2 \pi i)\left[\left(\frac{1}{2}\right)+(-4)\right]=-7 \pi i .
$$

(d)

Inside $|z|=7 / 2$, the singularities of f are at $z=1, z=2$ and at $z=3$, so by Cauchy Integral Formula we have

$$
J=J_{1}+J_{2}+J_{3}=2 \pi i\left[f_{1}(1)+f_{2}(2)+f_{3}(3)\right]=(2 \pi i)\left[\left(\frac{1}{2}\right)+(-4)+\frac{9}{2}\right]=2 \pi i .
$$

STUDENT NO:

Q-4) Write the Laurent series of $f(z)=\frac{1}{z^{2}-3 z+2}$ converging on the annulus $1<|z|<2$.

Solution:

First note that $1<|z|<2$ implies that $\left|\frac{z}{2}\right|<1$ and $\left|\frac{1}{z}\right|<1$. Next we observe that

$$
f(z)=\frac{1}{(z-1)(z-2)}=\frac{1}{z-2}-\frac{1}{z-1}=-\frac{1}{2} \frac{1}{1-\frac{z}{2}}-\frac{1}{z} \frac{1}{1-\frac{1}{z}} .
$$

Then we use geometric series to write

$$
f(z)=-\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}-\frac{1}{z} \sum_{n=0}^{\infty} \frac{1}{z^{n}} .
$$

Q-5) Let C be the contour along the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$ going from $z=-5$ to $z=2 i$, see figure below. Evaluate the following path integral.

$$
\int_{C} z d z
$$

Solution:

Method 1

The integrand is analytic so the integral is path independent. The integral thus depends only at the end points. Using the Fundamental Theorem of Calculus for analytic functions we get

$$
\int_{C} z d z=\left(\left.\frac{z^{2}}{2}\right|_{-5} ^{2 i}\right)=-\frac{29}{2}
$$

Method 2

Since the integrand function z is holomorphic, its path integrals depend only at end points. So we choose a simpler path joining the points -5 and $2 i$. Consider the path

$$
z=t+i\left(\frac{2}{5} t+2\right), t \in[-5,0] .
$$

Then we have

$$
z d z=\left(t+i\left(\frac{2}{5} t+2\right)\right) \times\left(1+\frac{2}{5} i\right) d t=\left[\left(\frac{21 t-20}{25}\right)+\left(\frac{4 t+10}{5}\right) i\right] d t .
$$

Finally

$$
\int_{C} z d z=\int_{-5}^{0}\left[\left(\frac{21 t-20}{25}\right)+\left(\frac{4 t+10}{5}\right) i\right] d t=-\frac{29}{2} .
$$

Method 3
We directly use the definition of path integral to calculate the given integral.

$$
z=5 \cos \theta+2 i \sin \theta \text { for } \theta \in\left[-\pi, \frac{\pi}{2}\right], \text { and } d z=(-5 \sin \theta+2 i \cos \theta) d \theta \text {. }
$$

Finally we get

$$
\int_{C} z d z=\int_{-\pi}^{\pi / 2}\left(-\frac{29}{2} \sin 2 \theta+10 i \cos 2 \theta\right) d \theta=\left(\left.\left[\frac{29}{4} \cos 2 \theta+5 i \sin 2 \theta\right]\right|_{-\pi} ^{\pi / 2}\right)=-\frac{29}{2} .
$$

