Math 206 Complex Calculus - Final Exam Solutions

Q-1) Solve the following recursion equation:

$$
f(n+2)-7 f(n+1)+12 f(n)=2^{n}, f(0)=f(1)=0 .
$$

Solution: Using Z-transformation we recall that

$$
\begin{aligned}
z(f(n)) & =F(z) \\
z(f(n+1) & =z F(z)-z f(0)=z F(z), \\
Z(f(n+2) & =z^{2} F(z)-z^{2} f(0)-z f(1)=z^{2} F(z), \\
z\left(2^{n}\right) & =\frac{z}{z-2} .
\end{aligned}
$$

Taking the 2 -transform of both sides of the equation we get

$$
\begin{aligned}
\left(z^{2}-7 z+12\right) F(z) & =\frac{z}{z-2}, \text { or } \\
F(z) & =\frac{z}{(z-2)(z-3)(z-4)}
\end{aligned}
$$

Recalling that under the Z-transform most functions go to a fraction with a z in the numerator, we use the partial fractions technique as follows;

$$
\begin{aligned}
F(z) & =\frac{z}{(z-2)(z-3)(z-4)} \\
& =z\left[\frac{1}{(z-2)(z-3)(z-4)}\right] \\
& =z\left[\frac{1}{2} \frac{1}{z-2}-\frac{1}{z-3}+\frac{1}{2} \frac{1}{z-4}\right] \\
& =\frac{1}{2} \frac{z}{z-2}-\frac{z}{z-3}+\frac{1}{2} \frac{z}{z-4}
\end{aligned}
$$

Taking inverse z-transform now gives

$$
f(n)=\left(\frac{1}{2}\right) 2^{n}-3^{n}+\left(\frac{1}{2}\right) 4^{n},
$$

or after simplifying,

$$
f(n)=2^{n-1}+2^{2 n-1}-3^{n}, n=0,1, \ldots
$$

You should in the exam check that the answer you find is actually a solution of the given equation.

Q-2) Let R be the region defined as

$$
R=\{z \in \mathbb{C}|1 \leq|z| \leq 2, \operatorname{Im} z \geq 0\}
$$

Consider the transformation $f(z)=z+\frac{1}{z}$.
Describe $f(R)$.
Describe the image of the boundary of R.
Is the transformation conformal?
Solution: This map is studied on page 374 of your book.
Let $z=r e^{i \theta}$. Then

$$
f(z)=u+i v=\left(r+\frac{1}{r}\right) \cos \theta+i\left(r-\frac{1}{r}\right) \sin \theta
$$

If $r=1$, then $w=2 \cos \theta$ and the inner circle maps onto the real interval $[-2,2]$ in the w plane. If $1<r \leq 2$, then $r-1 / r \neq 0$ and we obtain

$$
\frac{u^{2}}{\left(r+\frac{1}{r}\right)^{2}}+\frac{v^{2}}{\left(r-\frac{1}{r}\right)^{2}}=1
$$

If $0 \leq \theta \leq \pi$ and $r>1$, then $v>0$, so we get the part of this ellipse which is in the upper half plane. Putting $r=2$ we find the outermost ellipse in the image. The interior points of R are mapped to the interior points of this outermost ellipse with $v>0$.
The outer circle, $r=2$, maps onto this outermost ellipse.
When $\theta=0, f$ maps $[1,2]$ onto $[2,5 / 2]$.
When $\theta=\pi, f$ maps $[-2,-1]$ onto $[-5 / 2,-2]$.
$f^{\prime}(z)=1-1 / z^{2}=0$ only at $z= \pm 1$, so f is conformal at every other point.
Q-3) Solve the following boundary value problem for a bounded T;

$$
\begin{aligned}
T_{x x}(x, y)+T_{y y}(x, y) & =0, \quad y \geq 0,-\infty<x<\infty \\
T(x, 0) & =0, x<-2 \\
T(x, 0) & =1, \quad x>2 \\
T_{y}(x, 0) & =0,-2<x<2
\end{aligned}
$$

Solution: This is almost Exercise 6 on page 308, and the solution uses exactly the same argument given on page 306 .
Consider the region R given in the w plane by $v \geq 0$ and $-\pi / 2 \leq u \leq \pi / 2$. The map $z=2 \sin w$ sends this region onto our region, conformally except at the points $u= \pm \pi / 2$. A solution to our problem in R is $T(u, v)=(1 / 2)+(1 / \pi) u$. Check that it is a solution.
$z=2 \sin w$ becomes $x+i y=2 \sin u \cosh v+i 2 \cos u \sinh v$. Eliminating v we get

$$
\frac{x^{2}}{4 \sin ^{2} u}-\frac{y^{2}}{4 \cos ^{2} u}=1
$$

Using the properties of hyperbolas, this gives

$$
4 \sin u=\sqrt{(x+2)^{2}+y^{2}}-\sqrt{(x-2)^{2}+y^{2}}
$$

and solving for u finally gives

$$
T(x, y)=\frac{1}{2}+\frac{1}{\pi} \arcsin \left[\frac{1}{4}\left(\sqrt{(x+2)^{2}+y^{2}}-\sqrt{(x-2)^{2}+y^{2}}\right)\right],
$$

where $-\pi / 2 \leq \arcsin t \leq \pi / 2$ since this is the range for u.

Q-4) Describe the image of the x-axis under the Schwarz-Christoffel transformation

$$
f(z)=\alpha \int_{0}^{z}\left(s^{2}-1\right)^{-3 / 4} s^{-1 / 2} d s, \quad \text { where } \alpha=e^{i 3 \pi / 4}
$$

Hint: $\quad B(p, q)=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t, \quad p, q>0$, is the Beta function and in particular $B(1 / 4,1 / 4)=7.416 \ldots$
Solution: This is a reformulation of Exercise 1 on page 336.
We can set $x_{1}=-1, x_{2}=0, x_{3}=1$. The corresponding constants describing the angles are $k_{1}=3 / 4, k_{2}=1 / 2, k_{3}=3 / 4$. Since $k_{1}+k_{2}+k_{3}=2$, the image is a triangle. Since one of the angles is $k_{2} \pi=\pi / 2$, this is a right triangle. Since $k_{1}=k_{3}$, this is an isosceles right triangle. $f(0)=0$ is the right angle vertex of the triangle. To find $f(1)$ we evaluate the integral:

$$
f(1)=\alpha \int_{0}^{1}\left(s^{2}-1\right)^{-3 / 4} s^{-1 / 2} d s
$$

but here the $\left(s^{2}-1\right)$ factor is negative and a fourth root of it will be imaginary. We write it as

$$
\begin{aligned}
\left(s^{2}-1\right)^{-3 / 4} & =(-1)^{-3 / 4}\left(1-s^{2}\right)^{-3 / 4} \\
& =\alpha^{-1}\left(1-s^{2}\right)^{-3 / 4}
\end{aligned}
$$

and the integral becomes

$$
f(1)=\int_{0}^{1}\left(1-s^{2}\right)^{-3 / 4} s^{-1 / 2} d s
$$

which is a real integral. Say $f(1)=b \in \mathbb{R}^{+}$. Writing the integral for $f(-1)$ and making the substitution $t=-s$ we obtain that $f(-1)=i f(1)=i b$. Furthermore making the substitution $t=s^{2}$ in the integral for $f(1)$ we find that $b=(1 / 2) B(1 / 4,1 / 4)$.
Thus the real line maps onto the isosceles right triangle with right vertex at the origin and the other vertices at $(b, 0)$ and $(0, i b)$.

