Math 206 Complex Calculus
 Quiz-2

 Solutions

 Solutions}

1) Find all values of z^{c} and show which one is the principal value, where z and c are given as:
(a) $z=2 e^{i 5 \pi / 4}, c=1+i$.
(b) $z=-1-\sqrt{3} i, c=\sqrt{3} i$.

Solution: In general $z^{c}=\exp (c \log z)$ and the principal value is obtained when you take the argument of z to lie between $-\pi$ and π.
Solution a:

$$
\begin{aligned}
z^{c} & =\exp \left((1+i) \log \left(2 e^{i(5 \pi / 4+2 n \pi)}\right), \quad n \in \mathbb{Z}\right. \\
& =\exp ((1+i)(\ln 2+i(5 \pi / 4+2 n \pi))) \\
& =\exp \left[\left(\ln 2-\left(\frac{5 \pi}{4}+2 n \pi\right)\right)+i\left(\ln 2+\frac{5 \pi}{4}+2 n \pi\right)\right] \\
& =\exp \left[\ln 2-\left(\frac{5 \pi}{4}+2 n \pi\right)\right]\left[\cos \left(\ln 2+\frac{5 \pi}{4}+2 n \pi\right)+i \sin \left(\ln 2+\frac{5 \pi}{4}+2 n \pi\right)\right]
\end{aligned}
$$

Principal value is obtained when n is such that $-\pi<\frac{5 \pi}{4}+2 n \pi<\pi$. This is satisfied for $n=-1$ and then the principal argument of z becomes $-\frac{3 \pi}{4}$. Hence the principal value for z^{c} is $\exp \left[\ln 2+\frac{3 \pi}{4}\right]\left[\cos \left(\ln 2-\frac{3 \pi}{4}\right)+i \sin \left(\ln 2-\frac{3 \pi}{4}\right)\right] \cong-1.9-21 i$.

Solution b: $z=-1-\sqrt{3} i=2 e^{(-2 \pi / 3+2 n \pi)}, n \in \mathbb{Z}$.

$$
\begin{aligned}
z^{c} & =\exp \left(\sqrt{3} i \log 2 e^{(-2 \pi / 3+2 n \pi)}\right) \\
& =\exp (\sqrt{3} i(\ln 2+i(-2 \pi / 3+2 n \pi))) \\
& =\exp (-\sqrt{3}(-2 \pi / 3+2 n \pi)+i \sqrt{3} \ln 2) \\
& =\exp (-\sqrt{3}(-2 \pi / 3+2 n \pi))[\cos (\sqrt{3} \ln 2)+i \sin (\sqrt{3} \ln 2)]
\end{aligned}
$$

The principal value here corresponds to $n=0$: $z^{c}=\exp (2 \sqrt{3} \pi / 3)[\cos (\sqrt{3} \ln 2)+i \sin (\sqrt{3} \ln 2)] \cong 13.6+35 i$.
(The numerical calculation was not required in the quiz.)

