Math 206 Complex Calculus Quiz-2 <u>Solutions</u>

March 7, 2002

Ali Sinan Sertöz

1) Find all values of z^c and show which one is the principal value, where z and c are given as:

(a) $z = 2e^{i5\pi/4}, c = 1 + i$. (b) $z = -1 - \sqrt{3}i, c = \sqrt{3}i$.

Solution: In general $z^c = \exp(c \log z)$ and the principal value is obtained when you take the argument of z to lie between $-\pi$ and π . **Solution a:**

$$z^{c} = \exp((1+i)\log(2e^{i(5\pi/4+2n\pi)}), \quad n \in \mathbb{Z}$$

= $\exp((1+i)(\ln 2 + i(5\pi/4 + 2n\pi)))$
= $\exp[(\ln 2 - (\frac{5\pi}{4} + 2n\pi)) + i(\ln 2 + \frac{5\pi}{4} + 2n\pi)]$
= $\exp[\ln 2 - (\frac{5\pi}{4} + 2n\pi)][\cos(\ln 2 + \frac{5\pi}{4} + 2n\pi) + i\sin(\ln 2 + \frac{5\pi}{4} + 2n\pi)]$

Principal value is obtained when n is such that $-\pi < \frac{5\pi}{4} + 2n\pi < \pi$. This is satisfied for n = -1 and then the principal argument of z becomes $-\frac{3\pi}{4}$. Hence the principal value for z^c is $\exp[\ln 2 + \frac{3\pi}{4}][\cos(\ln 2 - \frac{3\pi}{4}) + i\sin(\ln 2 - \frac{3\pi}{4})] \approx -1.9 - 21i.$

Solution b: $z = -1 - \sqrt{3}i = 2e^{(-2\pi/3 + 2n\pi)}, n \in \mathbb{Z}.$

$$z^{c} = \exp(\sqrt{3}i\log 2e^{(-2\pi/3+2n\pi)})$$

= $\exp(\sqrt{3}i(\ln 2 + i(-2\pi/3 + 2n\pi)))$
= $\exp(-\sqrt{3}(-2\pi/3 + 2n\pi) + i\sqrt{3}\ln 2)$
= $\exp(-\sqrt{3}(-2\pi/3 + 2n\pi))[\cos(\sqrt{3}\ln 2) + i\sin(\sqrt{3}\ln 2)]$

The principal value here corresponds to n = 0: $z^c = \exp(2\sqrt{3\pi/3})[\cos(\sqrt{3\ln 2}) + i\sin(\sqrt{3\ln 2})] \approx 13.6 + 35i.$

(The numerical calculation was not required in the quiz.)