# Math 206 Complex Calculus <br> Quiz-3 <br> Solutions 

March 28, 2002
Ali Sinan Sertöz

1) Let $h(z)$ be an entire function with $h(0)=0, h^{\prime}(0)=0, h^{\prime \prime}(0)=a \neq 0$ and $h^{\prime \prime \prime}(0)=b$. Setting $f(z)=1 / h(z)$, find $\operatorname{Res}_{z=0} f(z)$.

Solution: Since $h$ is entire it has a Taylor series at $z=0$ which converges for all values of $z$. From the given data it follows that
$h(z)=\frac{a}{2} z^{2}+\frac{b}{6} z^{3}+\cdots=z^{2}\left(\frac{a}{2}+\frac{b}{6} z+\cdots\right)$,
and
$f(z)=\frac{1}{h(z)}=\frac{1}{z^{2}\left(\frac{a}{2}+\frac{b}{6} z+\cdots\right)}=\frac{1 /\left(\frac{a}{2}+\frac{b}{6} z+\cdots\right)}{z^{2}}$.
Setting $\phi(z)=\frac{1}{\frac{a}{2}+\frac{b}{6} z+\cdots}$, we see that the required residue is equal to $\phi^{\prime}(0)$ which is equal to $-\frac{2 b}{3 a^{2}}$.

If $h(z)=\left(e^{z}-1\right)^{2}$, then $a=2, b=6$ and the residue is -1 .
If $h(z)=\sin ^{2}(z)+z^{3}$, then $a=2, b=6$ and the residue is -1 .

