Math 206 Complex Calculus - Midterm Exam II Solutions

1 Solve the following differential equation using Laplace transform techniques:

$$
f^{\prime \prime}(t)-4 f^{\prime}(t)+3 f(t)=2 \delta(t-4)
$$

where $f(0)=1, f^{\prime}(0)=4$. Here δ is the Dirac delta function, also known as the impulse function.
Solution: We apply Laplace transform to both sides of the differential equation using the formulas

$$
\begin{aligned}
\mathcal{L}(f(t)) & =F(s), \\
\mathcal{L}\left(f^{\prime}(t)\right) & =s F(s)-f(0) \\
& =s F(s)-1, \\
\mathcal{L}\left(f^{\prime \prime}(t)\right) & =s^{2} F(s)-s f(0)-f^{\prime}(0) \\
& =s^{2} F(s)-s-4, \\
\mathcal{L}(\delta(t-4)) & =e^{-4 s} .
\end{aligned}
$$

The equation then becomes

$$
\left(s^{2}-4 s+3\right) F(s)-s=2 e^{-4 s} .
$$

Noting that $s^{2}-4 s+3=(s-1)(s-3)$, we find that

$$
\begin{aligned}
& \frac{1}{(s-1)(s-3)}=\frac{1 / 2}{s-3}-\frac{1 / 2}{s-1}, \text { and } \\
& \frac{s}{(s-1)(s-3)}=\frac{3 / 2}{s-3}-\frac{1 / 2}{s-1}
\end{aligned}
$$

Now solving for $F(s)$ we find that

$$
\begin{aligned}
F(s) & =\frac{2 e^{-4 s}}{(s-1)(s-3)}+\frac{s}{(s-1)(s-3)} \\
& =e^{-4 s}\left(\frac{1}{s-3}-\frac{1}{s-1}\right)+\frac{3 / 2}{s-3}-\frac{1 / 2}{s-1} .
\end{aligned}
$$

We now recall the formula

$$
\mathcal{L}(H(t-\alpha) g(t-\alpha))=e^{-\alpha s} \mathcal{L}(g(t))
$$

where H is the Heaviside function and g is any function. Using this we easily take Laplace inverse transform of both sides of the equation for $F(s)$ and get

$$
f(t)=H(t-4)\left(e^{3(t-4)}-e^{t-4}\right)+\frac{3}{2} e^{3 t}-\frac{1}{2} e^{t} .
$$

Check that this is actually the solution of the given differential equation. For this you may need to know that $H(t)^{\prime}=\delta(t)$ and that for any differentiable function $h(t)$, you have

$$
h(t) \delta^{\prime}(t-\alpha)=h(\alpha) \delta^{\prime}(t-\alpha)-h^{\prime}(\alpha) \delta(t-\alpha) .
$$

This last property follows from calculating the derivative of $h(t) \delta(t-\alpha)$ in two different ways as follows. First using the product rule for differentiation you have

$$
\begin{aligned}
(h(t) \delta(t-\alpha))^{\prime} & =h^{\prime}(t) \delta(t-\alpha)+h(t) \delta^{\prime}(t-\alpha) \\
& =h^{\prime}(\alpha) \delta(t-\alpha)+h(t) \delta^{\prime}(t-\alpha) .
\end{aligned}
$$

On the other hand you have

$$
\begin{aligned}
(h(t) \delta(t-\alpha))^{\prime} & =(h(\alpha) \delta(t-\alpha))^{\prime} \\
& =h(\alpha) \delta^{\prime}(t-\alpha)
\end{aligned}
$$

Putting these together you obtain the claimed property.

2 Solve the following difference equation:

$$
f(n+2)-f(n)=n^{2}
$$

where $f(0)=2$ and $f(1)=0$.
Solution: We take the z-transform of both sides using the formulas

$$
\begin{aligned}
z(f(n)) & =F(z), \\
z(f(n+2)) & =z^{2} F(z)-z^{2} f(0)-z f(1) \\
& =z^{2} F(z)-2 z^{2}, \\
z\left(n^{2}\right) & =\frac{z(z+1)}{(z-1)^{3}} .
\end{aligned}
$$

The equation now becomes

$$
z^{2} F(z)-2 z^{2}-F(z)=\frac{z(z+1)}{(z-1)^{3}}
$$

Solving for $F(z)$ we find

$$
\begin{aligned}
F(z) & =\frac{z}{(z-1)^{4}}+\frac{2 z^{2}}{(z-1)(z+1)} \\
& =\frac{z}{(z-1)^{4}}+\frac{z}{(z-1)}+\frac{z}{(z+1)} .
\end{aligned}
$$

Taking the inverse z-transform of both sides we get

$$
\begin{aligned}
f(n) & =\operatorname{Res}_{z=1} \frac{z^{n}}{(z-1)^{4}}+1+(-1)^{n} \\
& =\frac{n(n-1)(n-2)}{3!}+1+(-1)^{n}
\end{aligned}
$$

3) Evaluate the integral $\int_{0}^{\infty} \frac{x^{2}}{1+x^{9}} d x$.

Solution:

We integrate the function $f(z)=z^{2} /\left(1+z^{9}\right)$ around the closed contour $P_{R}=C_{R}+L_{R}+[0, R]$ where $R>1$ and

$$
\begin{aligned}
C_{R} & =\left\{R e^{i \theta} \mid 0 \leq \theta \leq 2 \pi / 9\right\} \\
-L_{R} & =\left\{x e^{2 \pi / 9} \mid 0 \leq x \leq R\right\} \\
{[0, R] } & =\{x \mid 0 \leq x \leq R\}
\end{aligned}
$$

Inside this contour there is only one pole of $f(z)$, which is $z=e^{i \pi / 9}$. By the residue theorem we have

$$
\begin{aligned}
\int_{P_{R}} f(z) d z & =2 \pi i \operatorname{Res}_{z=e^{i \pi / 9}} f(z) \\
& =2 \pi i\left(\frac{z^{2}}{9 z^{8}}\right)_{z=e^{i \pi / 9}} \\
& =2 \pi i\left(\frac{1}{9} e^{-i(2 \pi / 3)}\right) \\
& =(2 \pi i)(-1 / 18-i \sqrt{3} / 18) \\
& =\frac{\pi \sqrt{3}}{9}-i \frac{\pi}{9}
\end{aligned}
$$

Since $2<9-1$, the integral of $f(z)$ on C_{R} converges to zero as R goes to infinity. By direct calculation we see that

$$
\int_{L_{R}} f(z) d z=-e^{i 2 \pi / 3} \int_{[0, R]} f(z) d z
$$

Let

$$
I=\int_{0}^{\infty} \frac{x^{2}}{1+x^{9}} d x
$$

Then after taking limits as R goes to infinity we get

$$
\begin{aligned}
\frac{\pi \sqrt{3}}{9}-i \frac{\pi}{9} & =\left(1-e^{i 2 \pi / 3}\right) I \\
& =(3 / 2-i \sqrt{3} / 2) I
\end{aligned}
$$

Hence

$$
I=\frac{2 \pi}{9 \sqrt{3}}=\frac{2 \sqrt{3} \pi}{27}
$$

4) Evaluate the integral $\int_{0}^{\infty} \frac{x^{1 / 2}}{(1+x)^{3}} d x$.

Solution:

For this we will set $f(z)=z^{1 / 2} /(1+z)^{3}$ and use the usual closed path of figure 70 in your text book on page 224. First note that

$$
\left|\int_{C_{R}} \frac{z^{1 / 2}}{(1+z)^{3}} d z\right| \leq 2 \pi \frac{R^{3 / 2}}{(R-1)^{3}} \mapsto 0 \text { as } R \mapsto \infty
$$

and

$$
\left|\int_{C_{\rho}} \frac{z^{1 / 2}}{(1+z)^{3}} d z\right| \leq 2 \pi \frac{\rho^{3 / 2}}{(1-\rho)^{3}} \mapsto 0 \text { as } \rho \mapsto 0 .
$$

Let $L_{R, \rho}$ denote the line along $z=x e^{2 \pi i}$ as x ranges from R to ρ. We then have

$$
\begin{aligned}
\int_{L_{R, \rho}} f(z) d z & =-\int_{-L_{R, \rho}} f(z) d z \\
& =-\int_{\rho}^{R} \frac{z^{1 / 2} e^{2 \pi i / 2}}{(1+z)^{3}} d z \\
& =\int_{0}^{R} \frac{z^{1 / 2}}{(1+z)^{3}} d z
\end{aligned}
$$

Let $P_{R, \rho}=[\rho, R]+C_{R}+C_{\rho}+L_{R, \rho}$. By residue formula we get

$$
\begin{aligned}
\int_{P_{R, \rho}} \frac{z^{1 / 2}}{(1+z)^{3}} d z & =2 \pi i \operatorname{Res}_{z=-1} \frac{z^{1 / 2}}{(1+z)^{3}} \\
& =\left.(2 \pi i) \frac{1}{2!} \frac{d^{2} z^{1 / 2}}{d z^{2}}\right|_{z=-1} \\
& =\frac{\pi}{4}
\end{aligned}
$$

Taking limits of both sides as $R \mapsto \infty, \rho \mapsto 0$ and noting that the integral on $L_{R, \rho}$ has the same limit as the integral on $[\rho, R]$ we get

$$
\int_{0}^{\infty} \frac{x^{1 / 2}}{(1+x)^{3}} d x=\frac{\pi}{8}
$$

