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Math 206 Complex Calculus – Midterm Exam II
Solutions

1 Solve the following differential equation using Laplace transform techniques:

f ′′(t)− 4f ′(t) + 3f(t) = 2δ(t− 4)

wheref(0) = 1, f ′(0) = 4. Hereδ is the Dirac delta function, also known as the impulse function.

Solution: We apply Laplace transform to both sides of the differential equation using the formulas

L(f(t)) = F (s),

L(f ′(t)) = sF (s)− f(0)

= sF (s)− 1,

L(f ′′(t)) = s2F (s)− sf(0)− f ′(0)

= s2F (s)− s− 4,

L(δ(t− 4)) = e−4s.

The equation then becomes
(s2 − 4s + 3)F (s)− s = 2e−4s.

Noting thats2 − 4s + 3 = (s− 1)(s− 3), we find that
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Now solving forF (s) we find that

F (s) =
2e−4s

(s− 1)(s− 3)
+
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= e−4s
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We now recall the formula
L(H(t− α)g(t− α)) = e−αsL(g(t))

whereH is the Heaviside function andg is any function. Using this we easily take Laplace inverse
transform of both sides of the equation forF (s) and get

f(t) = H(t− 4)
(
e3(t−4) − et−4

)
+

3

2
e3t − 1

2
et.

Check that this is actually the solution of the given differential equation. For this you may need to
know thatH(t)′ = δ(t) and that for any differentiable functionh(t), you have

h(t)δ′(t− α) = h(α)δ′(t− α)− h′(α)δ(t− α).



This last property follows from calculating the derivative ofh(t)δ(t − α) in two different ways as
follows. First using the product rule for differentiation you have

(h(t)δ(t− α))′ = h′(t)δ(t− α) + h(t)δ′(t− α)

= h′(α)δ(t− α) + h(t)δ′(t− α).

On the other hand you have

(h(t)δ(t− α))′ = (h(α)δ(t− α))′

= h(α)δ′(t− α)

Putting these together you obtain the claimed property.

2 Solve the following difference equation:

f(n + 2)− f(n) = n2,

wheref(0) = 2 andf(1) = 0.

Solution: We take the z-transform of both sides using the formulas

Z(f(n)) = F (z),

Z(f(n + 2)) = z2F (z)− z2f(0)− zf(1)

= z2F (z)− 2z2,

Z(n2) =
z(z + 1)

(z − 1)3
.

The equation now becomes

z2F (z)− 2z2 − F (z) =
z(z + 1)

(z − 1)3
.

Solving forF (z) we find

F (z) =
z

(z − 1)4
+

2z2

(z − 1)(z + 1)

=
z
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+

z
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+

z
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.

Taking the inverse z-transform of both sides we get

f(n) = Resz=1
zn

(z − 1)4
+ 1 + (−1)n

=
n(n− 1)(n− 2)

3!
+ 1 + (−1)n.

3) Evaluate the integral

∞∫

0

x2

1 + x9
dx.

Solution:
We integrate the functionf(z) = z2/(1 + z9) around the closed contourPR = CR + LR + [0, R]
whereR > 1 and

CR = {Reiθ | 0 ≤ θ ≤ 2π/9},
−LR = {xe2π/9| 0 ≤ x ≤ R},
[0, R] = {x| 0 ≤ x ≤ R}.



Inside this contour there is only one pole off(z), which isz = eiπ/9. By the residue theorem we have
∫

PR

f(z)dz = 2πiResz=eiπ/9f(z)

= 2πi
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)
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.

Since2 < 9 − 1, the integral off(z) on CR converges to zero asR goes to infinity. By direct
calculation we see that ∫

LR

f(z)dz = −ei2π/3

∫

[0,R]

f(z)dz.

Let

I =

∞∫

0

x2

1 + x9
dx.

Then after taking limits asR goes to infinity we get

π
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Hence
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4) Evaluate the integral
∫ ∞

0

x1/2

(1 + x)3
dx.

Solution:
For this we will setf(z) = z1/2/(1 + z)3 and use the usual closed path of figure 70 in your text book
on page 224. First note that

∣∣∣∣
∫
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z1/2
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Let LR, ρ denote the line alongz = xe2πi asx ranges fromR to ρ. We then have
∫

LR, ρ

f(z)dz = −
∫

−LR, ρ

f(z)dz

= −
∫ R
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(1 + z)3
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=
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dz.



Let PR, ρ = [ρ,R] + CR + Cρ + LR, ρ. By residue formula we get

∫
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(1 + z)3
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π
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.

Taking limits of both sides asR 7→ ∞, ρ 7→ 0 and noting that the integral onLR, ρ has the same limit
as the integral on[ρ,R] we get

∫ ∞
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