Math 206 Complex Calculus
 Quiz-1

 Solutions

 Solutions}

February 27, 2003
Ali Sinan Sertöz

1) Find all the fourth roots of (a) $z_{0}=-8+8 \sqrt{3} i$, (b) $z_{0}=-8-8 \sqrt{3} i$.

Solution: Let $\alpha_{0}=\operatorname{Arg}\left(z_{0}\right)$, where $0 \leq \alpha_{0}<2 \pi$. It is determined by plotting z_{0} on the $x y$-plane. Now let $\theta_{k}=\frac{\alpha_{0}+2 k \pi}{4}$ for $k=0,1,2,3$. Note that in both cases $\left|z_{0}\right|=16=2^{4}$, and $c_{k}=2\left(\cos \theta_{k}+i \sin \theta_{k}\right)$ for $k=0,1,2,3$ are all the required fourth roots of z_{0}.

Solution a: $\alpha_{0}=\frac{2 \pi}{3}$.
$\theta_{k}=\left(\frac{2 \pi}{3}+2 k \pi\right) \frac{1}{4}$, so: $\theta_{0}=\frac{\pi}{6}, \theta_{1}=\frac{4 \pi}{6}=\pi-\frac{\pi}{3}, \theta_{2}=\frac{7 \pi}{6}=\pi+\frac{\pi}{6}$,
$\theta_{3}=\frac{10 \pi}{6}=2 \pi-\frac{\pi}{3}$.
Now a straightforward calculation gives
$c_{0}=\sqrt{3}+i, c_{1}=-1+i \sqrt{3}, c_{2}=-\sqrt{3}-i, c_{3}=1-i \sqrt{3}$.
Solution b: $\alpha_{0}=\frac{4 \pi}{3}$.
$\theta_{k}=\left(\frac{4 \pi}{3}+2 k \pi\right) \frac{1}{4}$, so: $\theta_{0}=\frac{\pi}{3}, \theta_{1}=\frac{5 \pi}{6}=\pi-\frac{\pi}{6}, \theta_{2}=\frac{8 \pi}{6}=\pi+\frac{\pi}{3}$,
$\theta_{3}=\frac{11 \pi}{6}=2 \pi-\frac{\pi}{6}$.
Now a straightforward calculation gives
$c_{0}=1+i \sqrt{3}, c_{1}=-\sqrt{3}+i, c_{2}=-1-i \sqrt{3}, c_{3}=\sqrt{3}-i$.

