Math 206 Complex Calculus

Quiz-3
Solutions
April 3, 2003 Ali Sinan Sertoz
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1-a) Evaluate the integral / dx.
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Solution 1-a: Let f(z) = % Let Cgr denote the closed contour which

consists of the path along the real axis from —R to R, followed by the semi-
circle |z| = R, where R > 1. The poles of the function f are the points where
1+ 2* = 0, and there are two of them inside the contour Cz. They are
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Since deg 2% < (deg(1 + 2*)) — 1, the integral on the semicircle goes to zero
as R goes to infinity. The integral along [—R, R| converges to the Cauchy
Principal Value which is twice the integral we are trying to evaluate, since
the integrant is an even function. Thus we get
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1-b) Evaluate the integral /
0

Solution 1-b: Let f(2) = lfzﬁ. Let Cr denote the closed contour which
consists of the path along the real axis from —R to R, followed by the semi-
circle |z| = R, where R > 1. The poles of the function f are the points where

1+ 2% = 0, and there are three of them inside the contour Cr. They are

V3

41
a4 = _— —_
1 9 27
Zo = ?:,

—\/g 1
23 = T+§

1
Let g(z) = L — . Then the residue of fat zx is g(z), k=1,2,3.
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g(z2) = —i/6,
9(z3) = é(—g—%),
9(z1) + g(z2) + g(z3) = —%.

Since deg 2* < (deg(1 + 2%)) — 1, the integral on the semicircle goes to zero
as R goes to infinity. The integral along [—R, R| converges to the Cauchy
Principal Value which is twice the integral we are trying to evaluate, since
the integrant is an even function. Thus we get
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