Math 206 Complex Calculus
 Quiz-3
 Solutions

April 3, 2003
Ali Sinan Sertöz
1-a) Evaluate the integral $\int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} d x$.

Solution 1-a: Let $f(z)=\frac{z^{2}}{1+z^{4}}$. Let C_{R} denote the closed contour which consists of the path along the real axis from $-R$ to R, followed by the semicircle $|z|=R$, where $R>1$. The poles of the function f are the points where $1+z^{4}=0$, and there are two of them inside the contour C_{R}. They are

$$
\begin{aligned}
& z_{1}=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}, \\
& z_{2}=\frac{-1}{\sqrt{2}}+\frac{i}{\sqrt{2}} .
\end{aligned}
$$

Let $g(z)=\frac{x^{2}}{4 x^{3}}=\frac{1}{4 x}$. Then the residue of f at z_{k} is $g\left(z_{k}\right), k=1,2$.

$$
\begin{aligned}
g\left(z_{1}\right) & =\frac{1}{4}\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right) \\
g\left(z_{2}\right) & =\frac{1}{4}\left(-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right) \\
g\left(z_{1}\right)+g\left(z_{2}\right) & =-\frac{i \sqrt{2}}{4}
\end{aligned}
$$

Since $\operatorname{deg} z^{2}<\left(\operatorname{deg}\left(1+z^{4}\right)\right)-1$, the integral on the semicircle goes to zero as R goes to infinity. The integral along $[-R, R]$ converges to the Cauchy Principal Value which is twice the integral we are trying to evaluate, since the integrant is an even function. Thus we get

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} d x & =\left(2 \pi i\left[g\left(z_{1}\right)+g\left(z_{2}\right)\right]\right) / 2 \\
& =\frac{\pi \sqrt{2}}{4}
\end{aligned}
$$

1-b) Evaluate the integral $\int_{0}^{\infty} \frac{x^{4}}{1+x^{6}} d x$.

Solution 1-b: Let $f(z)=\frac{z^{4}}{1+z^{6}}$. Let C_{R} denote the closed contour which consists of the path along the real axis from $-R$ to R, followed by the semicircle $|z|=R$, where $R>1$. The poles of the function f are the points where $1+z^{6}=0$, and there are three of them inside the contour C_{R}. They are

$$
\begin{aligned}
& z_{1}=\frac{\sqrt{3}}{2}+\frac{i}{2} \\
& z_{2}=i, \\
& z_{3}=\frac{-\sqrt{3}}{2}+\frac{i}{2}
\end{aligned}
$$

Let $g(z)=\frac{x^{4}}{6 x^{5}}=\frac{1}{6 x}$. Then the residue of f at z_{k} is $g\left(z_{k}\right), k=1,2,3$.

$$
\begin{aligned}
g\left(z_{1}\right) & =\frac{1}{6}\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right) \\
g\left(z_{2}\right) & =-i / 6 \\
g\left(z_{3}\right) & =\frac{1}{6}\left(-\frac{\sqrt{3}}{2}-\frac{i}{2}\right), \\
g\left(z_{1}\right)+g\left(z_{2}\right)+g\left(z_{3}\right) & =-\frac{i}{3}
\end{aligned}
$$

Since $\operatorname{deg} z^{4}<\left(\operatorname{deg}\left(1+z^{6}\right)\right)-1$, the integral on the semicircle goes to zero as R goes to infinity. The integral along $[-R, R]$ converges to the Cauchy Principal Value which is twice the integral we are trying to evaluate, since the integrant is an even function. Thus we get

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x^{4}}{1+x^{6}} d x & =\left(2 \pi i\left[g\left(z_{1}\right)+g\left(z_{2}\right)+g\left(z_{3}\right)\right]\right) / 2 \\
& =\frac{\pi}{3}
\end{aligned}
$$

