Math 206 Complex Calculus
 Quiz-5
 Solutions

May 15, 2003
Ali Sinan Sertöz
1-a) Let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y \geq 0\right\}$. Find a bounded harmonic function $T(x, y)$ on D such that $T(x, 0)=0$ and $T(0, y)=1$.

Solution 1-a: Map the region D by $\log z=\ln r+i \theta=u+i v$ onto the region $E=\left\{(u, v) \in \mathbb{R}^{2} \mid 0 \leq v \leq \pi / 2\right\}$. Consider the function $H(u, v)=2 v / \pi$ on E. This is harmonic on E and satisfies the given boundary conditions. Let $T(x, y)=H(u(x, y), v(x, y))$. Putting in $v=\theta=\arctan (y / x)$ we get $T(x, y)=(2 / \pi) \arctan (y / x)$ as the required bounded harmonic function. Note: This is a simplified version of Exercise 4 on page 307.

1-b) Let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1, x, y \geq 0\right\}$. Find a harmonic function $T(x, y)$ on D such that $T(x, 0)=0, T(0, y)=1$ and $\partial T / \partial \vec{n}=0$ along the circular part of the boundary.

Solution 1-b: The function $\log z=\ln r+i \theta=u+i v$ maps D onto the region $E=\left\{(u, v) \in \mathbb{R}^{2} \mid u \leq 0,0 \leq v \leq \pi / 2\right.$. The function $H(u, v)=$ $2 v / \pi$ is harmonic on E and satisfies the given boundary conditions. Define $T(x, y)=H(u(x, y), v(x, y))$. Putting in $v=\theta=\arctan (y / x)$ we get $T(x, y)=(2 / \pi) \arctan (y / x)$ as the required bounded harmonic function.
Note: This is a simplified version of Exercise 5 on page 308.

