Math 206 Complex Calculus- Midterm Exam I
 Solutions

Q-1) Find all the cube roots of $-8 i$.

Solution:

$$
\begin{aligned}
-8 i & =8 e^{i(-\pi / 2+2 n \pi)}, \quad n \in \mathbb{Z} \\
c_{k} & =2 e^{i(-\pi / 6+2 k \pi / 3)} \quad k=0,1,2 . \\
c_{0} & =2 e^{i(-\pi / 6)}=\sqrt{3}-i \\
c_{1} & =2 e^{i(-\pi / 6+2 \pi / 3)}=2 e^{\pi / 2}=2 i . \\
c_{2} & =2 e^{i(-\pi / 6+4 \pi / 3)}=2 e^{7 \pi / 6}=-\sqrt{3}-i .
\end{aligned}
$$

Q-2) Let $a=(\sqrt{3} i-1) \frac{e^{2}}{2}$ and $b=\left(\frac{5}{4}-i \frac{\pi}{3}\right)$. Calculate the principal value of a^{b}.

Solution:

$a=e^{2} e^{i(2 \pi / 3)}, a^{b}=\exp (b \log a)=\exp \left(\left(\frac{5}{4}-i \frac{\pi}{3}\right)\left(2+i \frac{2 \pi}{3}\right)\right)=\exp \left[\left(\frac{5}{2}+\frac{2 \pi^{2}}{9}\right)+i \frac{\pi}{6}\right]$
$a^{b}=\left[\exp \left(\frac{5}{2}+\frac{2 \pi^{2}}{9}\right)\right]\left[\frac{\sqrt{3}}{2}+i \frac{1}{2}\right]$.

Q-3) Find all values of $z \in \mathbb{C}$ for which $\sinh z=i \sqrt{2}$ using
I) $\sinh z=\sinh x \cos y+i \cosh x \sin y$
II) $\sinh ^{-1} z=\log \left[z+\left(z^{2}+1\right)^{1 / 2}\right]$.

Solution:

I) $\sinh x \cos y=0$ gives either $x=0$ or $y=(1 / 2+n) \pi$ where n is an integer. Putting $x=0$ in the second equation $\cosh x \sin y=\sqrt{2}$ gives $\sin y=\sqrt{2}$ which is impossible. So we must have $y=(1 / 2+n) \pi$. Putting this into the second equation now gives $(-1)^{n} \cosh x=\sqrt{2}$, from where it follows that n is an even integer since $\cosh x$ is always positive. Solving $\sqrt{2}=\cosh x=$ $\left(e^{x}+e^{-x}\right) / 2$ gives $x= \pm \ln (1+\sqrt{2})$. The solution set is then $z= \pm \ln (1+\sqrt{2})+i(1 / 2+2 n) \pi$.
II) $\sinh ^{-1} z=\log \left[z+\left(z^{2}+1\right)^{1 / 2}\right]=\log [i \sqrt{2} \pm i]=\log \left[(\sqrt{2} \pm 1) e^{i(1 / 2+2 n) \pi}\right]$ $=\ln (\sqrt{2} \pm 1)+i(1 / 2+2 n) \pi= \pm \ln (\sqrt{2}+1)+i(1 / 2+2 n) \pi$.

Q-4) Evaluate the integral $\int_{C} \frac{z^{2}+z+1}{z^{2}(z-1)(z-2)} d z$, where C is the circle with radius $3 / 2$ centered at the origin and oriented positively.

Solution:

Let $f(z)=\frac{z^{2}+z+1}{(z-1)(z-2)}$ and $g(z)=\frac{z^{2}+z+1}{z^{2}(z-2)}$. Also let C_{0} be a circle of radius $1 / 3$ centered at $z=0$, and C_{1} a circle of radius $1 / 3$ centered at $z=1$. Then

$$
\begin{aligned}
\int_{C} \frac{z^{2}+z+1}{z^{2}(z-1)(z-2)} d z & =\int_{C_{0}} \frac{f(z) d z}{z^{2}}+\int_{C_{1}} \frac{g(z) d z}{z-1} \\
& =2 \pi i\left(f^{\prime}(0)+g(1)\right) \quad(\text { Cauchy Integral Formula) } \\
& =2 \pi i\left(\frac{5}{4}-3\right)=-\frac{7}{2} \pi i
\end{aligned}
$$

Q-5) Let S be the positively oriented square path formed in the complex plane by joining the points $1, i,-1$ and $-i$. Evaluate the integral $\frac{1}{\pi i} \int_{S} \frac{\tan z}{(3 z-\pi)^{3}} d z$.

Solution:

The integrand is analytic on and inside the contour of integration and by the Cauchy-Goursat theorem the integral is zero.

