Math 206 Complex Calculus– Midterm Exam II Solutions

Q-1) Evaluate $\int_0^\infty \frac{x^{1/3}}{(8+x)^3} dx.$

Note: If certain limits are used in your solution, show clearly how they are evaluated.

Solution:

Use contour of Figure 70 on page 224 with $0 < \rho < 8 < R$. Let $f(z) = z^{1/3}/(8+z)^3$. Residue of f at z = -8 is obtained by evaluating $(1/2)(z^{1/3})''$ at z = -8. This gives $Res = -(1/9)(-8)^{-5/3}$. Calculating this using complex log gives $Res = -\frac{1}{576} - i\frac{\sqrt{3}}{576}$. Along the lower path on the real axis, $z = xe^{2\pi i}$ and since we are travelling backwards the integral gains a multiplicative factor of $-e^{2\pi i/3}$. If I denotes the value of our integral then, after taking limits, we get $(1 - e^{2\pi i/3})I = 2\pi i$ Res. Solving this we get $I = \frac{\pi\sqrt{3}}{432}$.

Q-2) Evaluate $\frac{1}{2\pi i} \int_C \frac{z^7}{1-2z^8} dz$, where *C* is the unit circle traversed counterclockwise.

Solution:

This integral is equal to the sum of the residues of $\frac{z^7}{1-2z^8}$, all of which are inside the unit circle. Its residue at any of its roots is $Res_{z=z_0}\frac{z^7}{1-2z^8} = \frac{z^7}{(1-2z^8)'}\Big|_{z=z_0} = -\frac{1}{16}$, and is independent of which root is involved. There are 8 roots, so the sum of the residues is $-\frac{1}{2}$.

We can also use the residue at infinity concept, Theorem 2 on page 185. Then this integral is equal to the residue at z = 0 of $\frac{1}{z^2} \frac{(1/z)^7}{1 - 2(1/z)^8}$. It is easily calculated to be -1/2.

Q-3) Using Laplace transform techniques solve the initial value problem

$$f''(t) - 3f'(t) + 2f(t) = 1$$
, whith $f(0) = 0$, $f'(0) = 1$.

Solution:

Hitting with Laplace, solving for F(s) and using partial fractions give

$$F(s) = \frac{1}{2s} - \frac{2}{s-1} + \frac{3}{2(s-2)}.$$

Then $f(t) = \frac{1}{2} - 2 e^{t} + \frac{3}{2} e^{2t}$.

Q-4) Solve the Volterra equation $x(t) = \cos t + \int_0^t \sinh(t-u) x(u) du$.

Solution:

See page 7 of the notes on Laplace. $X(s) = \frac{F(s)}{1 - H(s)} = \frac{1}{3}\frac{s}{s^2 - 2} + \frac{2}{3}\frac{s}{s^2 + 1}$. Then $x(t) = \frac{1}{3}\cosh\sqrt{2}t + \frac{2}{3}\cos t$.

Q-5) Using z-transform techniques solve the recurrence equation f(n+3) = 2f(n+2) - f(n) where f(0) = 1, f(1) = 2, and f(2) = 4.

Solution:

Transforming the given equation with z-transform and solving for F(z) gives $F(z) = \frac{z^3}{z^3 - 2z^2 + 1}$. The denominator is easily seen to have z = 1 as a root. Using this we get $z^3 - 2z^2 + 1 = (z-1)(z^2 - z - 1)$. Its roots are 1, $\alpha = (1 + \sqrt{5})/2$, and $\beta = (1 - \sqrt{5})/2$. Then using the residue method to calculate inverse z-transform (see pages 25-26 of the notes) we get $f(n) = \sum_{n=0,1,2,...} Res \frac{z^{n+2}}{z^3 - 2z^2 + 1}$. This is easily calculated to be $f(n) = \frac{2}{5 - \sqrt{5}} \alpha^{n+2} + \frac{2}{5 + \sqrt{5}} \beta^{n+2} - 1$, n = 0, 1, 2, ...

Comments to sertoz@bilkent.edu.tr