Math 206 Complex Calculus- Midterm Exam II
 Solutions

Q-1) Evaluate $\int_{0}^{\infty} \frac{x^{1 / 3}}{(8+x)^{3}} d x$.
Note: If certain limits are used in your solution, show clearly how they are evaluated.

Solution:

Use contour of Figure 70 on page 224 with $0<\rho<8<R$. Let $f(z)=z^{1 / 3} /(8+z)^{3}$. Residue of f at $z=-8$ is obtained by evaluating $(1 / 2)\left(z^{1 / 3}\right)^{\prime \prime}$ at $z=-8$. This gives Res $=-(1 / 9)(-8)^{-5 / 3}$. Calculating this using complex log gives Res $=-\frac{1}{576}-i \frac{\sqrt{3}}{576}$. Along the lower path on the real axis, $z=x e^{2 \pi i}$ and since we are travelling backwards the integral gains a multiplicative factor of $-e^{2 \pi i / 3}$. If I denotes the value of our integral then, after taking limits, we get $\left(1-e^{2 \pi i / 3}\right) I=2 \pi i$ Res. Solving this we get $I=\frac{\pi \sqrt{3}}{432}$.

Q-2) Evaluate $\frac{1}{2 \pi i} \int_{C} \frac{z^{7}}{1-2 z^{8}} d z$, where C is the unit circle traversed counterclockwise.

Solution:

This integral is equal to the sum of the residues of $\frac{z^{7}}{1-2 z^{8}}$, all of which are inside the unit circle. Its residue at any of its roots is $\operatorname{Res}_{z=z_{0}} \frac{z^{7}}{1-2 z^{8}}=\left.\frac{z^{7}}{\left(1-2 z^{8}\right)^{\prime}}\right|_{z=z_{0}}=-\frac{1}{16}$, and is independent of which root is involved. There are 8 roots, so the sum of the residues is $-\frac{1}{2}$.

We can also use the residue at infinity concept, Theorem 2 on page 185. Then this integral is equal to the residue at $z=0$ of $\frac{1}{z^{2}} \frac{(1 / z)^{7}}{1-2(1 / z)^{8}}$. It is easily calculated to be $-1 / 2$.

Q-3) Using Laplace transform techniques solve the initial value problem

$$
f^{\prime \prime}(t)-3 f^{\prime}(t)+2 f(t)=1, \quad \text { whith } \quad f(0)=0, \quad f^{\prime}(0)=1 .
$$

Solution:

Hitting with Laplace, solving for $F(s)$ and using partial fractions give

$$
F(s)=\frac{1}{2 s}-\frac{2}{s-1}+\frac{3}{2(s-2)}
$$

Then $f(t)=\frac{1}{2}-2 e^{t}+\frac{3}{2} e^{2 t}$.

Q-4) Solve the Volterra equation $x(t)=\cos t+\int_{0}^{t} \sinh (t-u) x(u) d u$.

Solution:

See page 7 of the notes on Laplace. $X(s)=\frac{F(s)}{1-H(s)}=\frac{1}{3} \frac{s}{s^{2}-2}+\frac{2}{3} \frac{s}{s^{2}+1}$. Then $x(t)=$ $\frac{1}{3} \cosh \sqrt{2} t+\frac{2}{3} \cos t$.

Q-5) Using z-transform techniques solve the recurrence equation $f(n+3)=2 f(n+2)-f(n)$ where $f(0)=1, f(1)=2$, and $f(2)=4$.

Solution:

Transforming the given equation with z-transform and solving for $F(z)$ gives $F(z)=\frac{z^{3}}{z^{3}-2 z^{2}+1}$. The denominator is easily seen to have $z=1$ as a root. Using this we get $z^{3}-2 z^{2}+1=$ $(z-1)\left(z^{2}-z-1\right)$. Its roots are $1, \alpha=(1+\sqrt{5}) / 2$, and $\beta=(1-\sqrt{5}) / 2$. Then using the residue method to calculate inverse z-transform (see pages $25-26$ of the notes) we get $f(n)=$ $\sum \operatorname{Res} \frac{z^{n+2}}{z^{3}-2 z^{2}+1}$. This is easily calculated to be $f(n)=\frac{2}{5-\sqrt{5}} \alpha^{n+2}+\frac{2}{5+\sqrt{5}} \beta^{n+2}-1$, $n=0,1,2, \ldots$.

