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1 Introduction

These notes are intended to guide the student through problem solving using
Laplace and z-transform techniques and is intended to be part of MATH 206
course. These notes are freely composed from the sources given in the bibli-
ography and are being constantly improved. Check the date above to see if this is
a new version.

You are welcome to contact me through e-mail if you have any comments on these
notes such as praise, criticism or suggestions for further improvements.
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2 Laplace Transformation

The main application of Laplace transformation for us will be solving some dif-
ferential equations. A differential equation will be transformed by Laplace trans-
formation into an algebraic equation which will be solvable, and that solution will
be transformed back to give the actual solution of the DE we started with.

We define the.aplace Transform of a functionf : [0,00) — C as

L(f(t) = /Ooo e ' f(t)dt fors e C

We sometimes usg(s) to denotel(f(t)) if there is no confusion. But beware of
conflicting notation in the literature.

Eulet was the first one to use this transformation to solve certain differential
equations in 1737. Later Laplac@dependently used it in his bodkéorie Ana-
lytigue de Probabiliésin 1812, [6, p285].

2.1 Existence of Laplace Transformation

It is clear thatl(f) does not exist for every functiofi. For example it can be
easily verified that&(et2) does not exist, i.e. the associated integral clearly di-
verges. HowevefL exists for a large class of functions. For example consider the
following class of functions:

A function f : [0,00) — C is said to be ofexponential order « if there are
positive real constantd/, 7" anda such that f(¢)| < Me* forall ¢t > T.

L(f) existsif f is integrable or0, b] for everyb > 0 andf is of exponential order

a for somea > 0. In this caseF(s) is defined if and only iRe s > a. Moreover
observe from the definition th%ﬂim F(s)=0.

A word of relief: We will basically be using Laplace transform techniques to
solve differential equations. Most differential equations with initial values will

1L eonhard Euler 1707-1783.
2Pierre-Simon Laplace 1749-1827.
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have a unique solution, see for example [7, p498-Thm 10.6 and p501-Thm 10.8].
We therefore formally apply Laplace transform techniques, without checking for
validity, and if in the end the function we find solves the differential equation then
it is the solution. For this reasons most tables of Laplace transforms do not give
the range of validity and are therefore wrong per se but perfectly acceptable given
the overall purpose.

2.2 Elementary Properties of Laplace Transformation

Before we start calculating the Laplace transformation of any function we can
derive some results which reflect our expectations ffafyi) using only the ele-
mentary properties of integrals.

Supposen, 5 € C and f, g functions for which Laplace transformation exists.
Then:

o L(af(t)+ Bg(t)) = aF(s) + BG(s). (Linearity)
o L(e®f(t)) = F(s — «). (Shift property)

e Supposef and all its derivatives up to and including ordeare continuous
on [0, c0) with f and each derivative having Laplace transformation. Then

L) = 5"F(s) = 5" f(0) = oo = 5" O (0) — oo = f7D(0).
In particular

L(f'(1) = sF(s) = f(0),
L") = s*F(s) = sf(0) = f'(0).

e If fis continuous or0, co), thenl (/Ot f(u)du) = F(s)/s.

e If fis continuous orf0, 0o), thenL (1" f(t)) = (—1)"F™(s).
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2.3 Transforms of some elementary functions

Before we apply Laplace transformation techniques to differential equations we
need to actually see the transformation of some functions. We generally need
some tables listing the Laplace transforms of some elementary functions. Then
using the properties listed in the previous section we can find the Laplace trans-
formation of most functions.

We begin by a table where each entry can be found by direct integration, using the
definition of the Laplace transformation.

In the following list,a andg are complex constants ands a nonnegative integer.

@
Lla) = —.
. L(a)=°
1
n n!
In generall(t") = sy
o L(e™) = , WhereRe s > Rea.
5 —
e L(sinat) = %, whereRe s > —Ima.
$° + «
o L(cosat) = %, whereRe s > —Im .
s+«
, o
[ ] L(smh Cl/t) = m
S
e L(coshat) = R

The next three formulas follow from the general propdrty” f(t)) = (—1)"F™)(s).

2as

[} L(tSIHOét) = m
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52 —062
° L(tCOSOZt) = m

o L(te ™) = wherea > 0.

(s +a)?’
n!

In generall (t"e~*") = Gy wherea > 0.
S+ o)

The next formulas follow from the shift properfy(e® f(t)) = F(s — ).

[ ] L(B_at sin ﬁt) = m, WhereO[ > 0.
B
[} L(e sinh 6t> = m, whereo > 0.
S a)e —
—at s+a
o L(e ™ cosft) = G5t wherea > 0.
S «
o L(e * cosh ft) = %, wherea > 0.
S o)e —

2.4 Inverse Laplace Transformation

If L(f(t)) = F(s), thenf(t) is called the inverse Laplace transform/ofs) and
is denoted by ' (F(s)) = f(1).

If we assume that the functions whose Laplace transforms exist are going to be
taken as continuous then no two different functions can have the same Laplace
transform. Functions that differ only at isolated points can have the same Laplace
transform. Such uniqueness theorems allow us to find inverse Laplace transform

by looking at Laplace transform tables.

2s+3

Example:-2.1Find the functionf(¢) for which L(f(t)) = PR

Solution: By completing the denominator to a square and playing with the nu-

merator we writel(f(¢)) as
25+3  2(s+2) 1
s24+4s+13  (s+2)24+9  (s+2)24+9
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Here we try to recognize each part on the right as Laplace transform of some func-
tion, using a table of Laplace transforms. For example we notéfeat’ cos(3t)) =

s andL(e * sin(3t)) = 5. Using this information together with the

fact that Laplace transform is a linear operator we find that

) 2s + 3 o 2(s+2) . 1
L = - L -z el S G o
s?2+4s+ 13 (s+2)2+9 (s+2)2+9
1
= 2e *cos(3t) — 56_% sin(3t)
= [f(t).
Note: Inverse Laplace of a function can also be found using integrals and residues.

This is given in your textbook [3, sections 66-67].

2.5 Convolution

Whenf(t) andg(t) are defined fot > 0, and are piecewise continuous, then their
convolution, denoted by * g, is defined as

(f*g)(t /ft—u w)du, for 0 <t < oc.

Convolution has some immediate properties following from the above definition:
1.fxg=gx*].

2. fx(cg) = (cf) x g = c¢(f * g), wherec is a constant.

.fx(g+h)=f*xg+ f=*h.

4. fx(g*h)=(f xg)*h.

In particular the following property is useful:

L™HF(s)G(s)} = f* gwherel(f) = F andL(g) = G.

In other words;

L((f *9)(t)) = F(s)G(s).

Example:-2.2An equation of the form
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where f and h are known functions and is the unknown function is called
Volterra® integral equation. Note that the given integral is a convolution integral.
Letting capital letters denote the Laplace transform of the corresponding function
we apply Laplace operator to each side of the Volterra equation to obtain

X(s)=F(s)+ H(s)X(s).

Solving for X (s) we get

__F(s)

11— H(s)’

which can theoretically be inverted by Laplace transformation to give the required

x(t).

Example:-2.3Solve the Volterra equation

X(s)

z(t)=e"' — 4/0 cos 2(t — u)x(u)du.

Solution: Applying Laplace operator to each side we get

1 S
X(8) = oo ~ ¥ ey
Solving for X (s) we get
s?2+4
X pu
) = Grnerop
) 4 8

s+1_s+2+(s+2)2’

Applying Laplace inverse transformation to both sides of this equation we finally
get
z(s) = 5e ! — 4e™* — Ste .

3Vito Volterra 1860-1940.
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2.6 Heaviside unit function

The Heaviside unit function is denoted and defined as

0, ift<0;
H(t):{ 1, ift>0.

By directly integrating the Heavisiéunction we find that

—Ssa

LH(t—a)) = fora > 0.

S
In particular

1
L(H (1) = .
Compare this to the case where we apply Laplace operattc= 1 for ¢t > 0.

Again by direct integration we find the important shift property
LH(t—a)f(t—a)) =e *“L(f(t)), fora > 0.

Example:-2.4
56728
L(H(t—2)cos(t—2)) = 2T
Example:-2.5
) 6—25
L(H(t—2)sin(t—2)) = e
Example:-2.6

L(H(t—2)cos(t)) = L(H(t—2)cos((t—2)+2))
= L(H(t—2) (cos(t —2)cos(2) —sin(t — 2)sin(2)))

= cos(2)L(H(t — 2)cos(t — 2)) — sin(2)L(H (t — 2) sin(t — 2))
_ (s cos(2)  sin(2) ) o2
@+l (2+n)¢

4Oliver Heaviside 1850-1925.
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2.7 The square wave function

The square wave function, for some> 0, is defined as

(1) = 1, for2na<t<(2n+1)a, n€N;
1 -1, for(2n+1)a<t<(2n+2)a, n €N.

It follows that f(¢) )+ 2 Z 1)"H (t — na) and consequently

L) = 1+2Z
B 1 ] 26’“3 _1 1 —e 9
s l1+ea)  s\1+4e0s
1 as
. h<—>.
S an 2

2.8 Impulse function

Define a functionf (¢) for some positive numbéras

follows: 1
L foro <t <k; }
fe(t) = { b . 0.25 ¢

0, fort>k.

Note that the area under the graphfpis 1. If we take the limit off,, ask goes to
zero, we end up with a function which is zero whieg 0 and has infinite height
at0, but still with total areal under the graph, since it is the limiting position of
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graphs with area. We denote this new function hj(¢) and call it the impulse
function or Diraé delta function.

To find the Laplace transform of the impulse function we start with the Laplace of

fe:
L(fult)) = / " futetat

_st1k
el
0 k sk |,

B 1, . B sk (sk)?
AU A s TR T
Taking the limit ast — 0 we find

L(5()) = 1.

An impulse of size: is represented byd(t) and an impulse which is delayed by
time 7" is denoted by (¢t — T'). Recalling the shift property, i.&.(H (t —T') f(t —

T)) = e*TL(f(t)), we can immediately write the Laplace of a delayed impulse
function of a certain size:

L(a(t —T)) =al(H(t—T)6(t—T)) = ae*".
Example:-2.7 Solve the initial value problem
2" () + 32/ (t) + 2z(t) = 50(t — 2)
wherexz(0) = 4 andz’(0) = 0.
Solution: Transforming by Laplace we get
(s +3s +2) X (s) — 45 — 12 = 5¢2%. Solving for X (s) we find
S5e™25 4 45 4+ 12

X6 =G+
Here we observe that
1 1 1
(s+1)(s+2) s+1 s+2

S —1 2

(s+1)(s+2) s—|—1+5+2
5Paul Adrien Maurice Dirac 1902-1984.
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and recall the formulas

1
Le™™) = P and

LH(t = k) f(t = k) = e L(f(1)).

Applying inverse Laplace transformation with these formulas in mind we get

w(t) = 5" — 2 H(E—2) 442 — ) +12(et — )
= 5(e D 2DV H (4 — 2) — de™ % 4 8

2.9 Unsorted solved problems

Problem:-1 Find L(g(t)), where

0 for0<t<1
g(t)Z{

3t forl <t

p 1.5
i

Solution: Firstrecall thatl (H (t — a) f(t — a)) = e~ * F(s). We therefore write
3t in shifted form:3t = 3(t — 1) + 3. Let f(¢) = 3t + 3. Thenf(t — 1) = 3t and
H(t—-1)f(t—1)=g(t), fort > 0. Hence

L(g(t)) = L(H(t—1)f(t—1))=e"L(f(t))
= e *L(3t+3)

()

Problem:-2 Find L(g¢(t)), where

() = 0 for0<t<m 0 35
I = cost form <t
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Solution: Observe thatost = — cos(t — 7). Settingf(t) = — cost, we note
thatg(t) = H(t — 7) f(t — 7). SO

Lg(t)) = L(H{E—m)f(t —)
= e L(f(1)

Problem:-3 Find the inverse Laplace transform Bfs) = :
s3—s2+s5—1

Solution:
1
F pr—
1 1
2 52 +1 241/
Hence
—1 . 1 £l S -1 1
L(Fs) = (£ 3—1 (32+1) c (s2+1))

[\3|,_. DN | —

e —cost—smt)

. . 2
Problem:-4 Find the inverse Laplace transform Bfs) = — +
S
Solution:

52

LU FE) = LD e

Problem:-5 Solve f”(t) + f(t) = t, wheref(0) = 1, f'(0) = —2.
Solution:

L") +L(f1) = L)
(2F(s) — sf(0) — f'(0)) + F(s) = —
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S’F(s)—s+2+ F(s) = 12
S
Solving for F'(s);
F(s) = k= + 2 5

2 241 241
and applying inverse Laplace transform

1 s 3
—1 _ . _
L (_82+S2+1_82—|-1> = t+cost—3sint = f(t).

Problem:-6 Solve the initial value problent’(t)+y(t) = f(t), y(0) = 4/'(0) = 0,
wheref(t) =n+1fornr <t < (n+1)m,n e N,i.e. f(t)=> ", H(t— k).

Solution: We plan to take the Laplace transform of both sides of the differential

equation. For this observe that

Ly"(#) = sV (s) —sy(0) —y/(0) = s’V (s)
Lly®) = Y(

Ls@) = L

»~<
Va)

)
th—kw)

k=0

C(H(t — k) :ie

0 k=0

VR

—kms

I
Mg

i

Putting these together, the differential equation becomes

1 o
2Y Y — —kms
MY = Yo

and solving forY'(s)

V(s) = ( H)i

_ —kms S —krs
= - e i a— I 1 e .
S S
k=0 k=0

Before applying the inverse Laplace transform to both sides recall that
L(H(t —a)cos(t —a)) = (F=)e .

5241
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Define a new function

g(t) = ZH(t — k) cos(t — km).

k=0

We can finally apply the inverse Laplace transfornYg) to find

L) = AT et L G S et

y(t) = f(t) —g(®).

Problem:-7 Solve the initial value problery” (t) + y(t) = 3sin2t, t € [0, 00],
y(0) =1,4'(0) = —2.

Solution: LettingY (s) = L(y(t)), note that

L'(t) = s*Y(s) = sy(0) —y'(0)
= %Y (s) —s+2,
. 2
L(Sln 2t) = m

Taking the inverse Laplace of both sides of the differential equation we get

6
Y(s)—s+2+Y(s) = .
sY(s) —s+2+Y(s) 21
Solving forY'(s) we get
S 2
Y(s) = - .
(s) s24+1 s2+4

Taking the inverse Laplace transform gives

y(t) = cost — sin 2t.
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Problem:-8 Define a functionf(¢) as

0 ift<l1

1 if1<t<? P —
fy=< 2 if2<t<3 o

1 if3<t<4 ¥ t 5

0 if4<t

Note thatf(t) = H(t — 1)+ H(t —2) — H(t —3) — H(t — 4).
Solve the initial value probleny” — 3y’ + 2y = f(t), y(0) = ¥'(0) = 0.

Solution: Taking the Laplace transform of both sides gives

1
2y — 3sY +2Y = _(e—s + o725 _ o35 _ 6_45).
S

SetA = (e7* + e % — e % — ¢*). Then solving forY” gives

A
s(s —1)(s —2)
1A A 1 A

25 s—1+§s—2'

Yy —

Recall that

L(H(t — a)e’t=2) = P

Taking the inverse Laplace transform¥fgives

2

y(t) = > G —etF 4 %e%"“)) H(t—k)

k=1

/1 1
__t—k _2(t—]€) Ht_k
(2 ke ) (t— )
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Problem:-9 Find the solution of the system

d
d—f—6x+3y = 8¢
d
d—‘z—Qa:—y = 4e'

with initial conditionsz(0) = —1, y(0) = 0.

Solution: Taking the Laplace transform of the system and simplifying we find

—s+9
—-6)X+3Y =
(s —6)X + po|
2X +(s—1)Y 1
J— S — f—
s—1
Solving for X andY we find
—s+7 -2 1
X: =
(s—1)(s—4) s—1+s—4
2 —2/3 2/3
v o _ =23 2

G-D(—4) s—1 s—4
Applying inverse Laplace transform to these equations gives

w(t) = —2e' et
2 2
y(t) = —get + §e4t.




MATH 206 Complex Calculus and Transform TechniquesSipril 2004] 17

Problem:-10 Find that solution of

ug(z,t) = 2uy(x,t) + u(z,t), u(z,0) = 6e3*, which is bounded for: > 0,
t > 0.

Solution: First note that

[ 0u(x,t)
L(ug(z,t)) = /0 e Tdt

d o0
- - i e Stu(x, t)dt

d
= %U(:c,s).

It follows from general properties of Laplace transform that
L(ug(z,t)) = sU(z, s) — u(zx,0).

Putting these together, the given PDE transforms to

%U — (2s+ 1)U = —12¢77".

Multiplying both sides by the integration facter 2>+ gives
A
dx

Integrating this gives

(Ue—(2s+1)x) _ _126—(284-4)90.

6
2 67(23+4)m +

s+ 2

U67(23+1)x _ ¢,

or
6

U = _6731 + C€(2s+1)z.

s+ 2
Sinceu(x,t) must stay bounded as— oo, likewiseU (x, s) must stay bounded
whenx — oco. So we must choose= 0, and then we have
6
U — —3x
(0,5) = 5™
and hence

u(z,t) = 6e 273
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2.10 Unsorted Exercises

These exercises are taken from [5, 7, 8].

Exercise:-1 Find L(5t — 2).

5 2
ANS: - ==
S S
Exercise:-2 Find L(#3 + 8e~t +1).
6 8 1
Ans: — + + —.
st s+1 s
Exercise:-3 Find L(asin(at) + bsin(bt)).
a2 b2

AnNs:

52—|—a2+82+b2'

Exercise:-4 Find L(cos(at — a)).
_scosa+ asino

A
ns o
. 1
Exercise:-5 Find L (E)'
Ans: t3/6.
. . 1
Exercise:-6 Find L’l(st) ).
S
Ans: ¢+ t%/2.
25 —5
Exercise:-7 Find L~
Xere ! (32 o
Ans: 2 cos(3t) — (5/3) sin(3t).
, , 7!
Exercise:-8 FindL™'( )
(s —3)®

Ans: t7e3,

Exercise:-9 Solvey” + 5y’ + 6y = 3, with y(0) = 2, ¢'(0) = 0.
Ans:y = (1/2) + (9/2)e™% — 3e~3t.

Exercise:-10 Solvey” + 2y’ +y = sint, with y(0) = 3, ¢/(0) =
Ans:y = (9/2)te™t + (7/2)e™ (1/2) cost.
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Exercise:-11([5, p50]) Solve the differential equation
2
CC% + 32—9; + 20 = 56(t — 2), with 2(0) = 4, 2/(0) = 0.
Ans: 5(e=(72) — 22V (t — 2) + 8¢t — 4e™ 2,
Exercise:-12[7, p456] Solve the following linear system using Laplace trans-
form technique:

dx

&b — 32
dt+y e
dy

- = 0

at 7

t t t —t

e e e e
AnS:x:—E—l———i-Ze%, y=—+——e*.

2 2 2

Exercise:-13[7, p457] Solve the following linear system using Laplace trans-
form technique:

de dy _t
2% E—x—y = e
dr dy .
E—l—a—l—%—i—y = e

t e—t

Ans:x = 8sint + 2cost, y = —13sint + cost + % -5
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Exercise:-14[7, p457] Solve the following linear system using Laplace trans-
form technique:

d’x  _dr dy

@r g Y e, =
a CaTa Tty =
dxr dy
L% —
dt+dt T4y 0

Ans:z = —1+ 2" — e, y= -2+ €.

Exercise:-15[8, p484] Solve the following differential equation using Laplace
transform technique:

() — f(t) — 2f(t) = e "sin 2t, with £(0) = 0 and f'(0) = 2.

. 28 5 0 3
Ans: f(t) = 3¢ o€ T3¢ sin 2t + 56°¢

tcos 2t.
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3 The z-transform

Supposef(t) is a continuous function and we sample this function at time inter-
vals of T, thus obtaining the data

fQ0), f(T), f(2T), ..., f(nT),...

Recall that the impulse function at= T is denoted by (¢ — T'). If we denote by
f*(t) the sampled function we can write

fr&) = f0)5() + f(T)a(t = T) + f(2T)5(t — 2T) + - --
= > f(nT)i(t —nT)

n=0

The Laplace transform of this function then becomes

F(s) = L(7()
= D FTL(E(E—nT))

3 Ty
n=0

If we now set
T . 1
z = e or equivalentlys = T log(2)

then we can define

F(z) = Zf(nT)z’”

This functionF'(z) is called thez-transform of the discrete time signal function

f(nT),

In other words
2(f(t) = F(z)
= F(s) = F* (i loa(2))

3 (Z FnT)(6(n nT»)

Sometimes, as a suggestive notation, we Wité(n7)) instead ofZ(f(t)).

s= % log(z)
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Example:-3.8Find Z(H (nT")). Here we are sampling the functigitt) = H (),
the unit step function, or the Heaviside function, and obtaining the safiiple=
1foralln > 0.

Solution:

F(z) = le_":1+2_1+2_2—|—--~
n=0

1 z

1—2z1 z-1°

Hence we find that .
Z(H(nT)) = 1 for |z| > 1.
P

Example:-3.9Find the z-transform of the sampled functi¢tmT') for f(t) = ¢,
(the ramp function).

Solution: We find thatf(n7") = nT'. Hence

F(z) = Tz ' 42Tz 43Tz +---
T
z2(1—271)2
Tz
(z—1)

Hence T
: 5, for[z] > 1.

Z(nT) = m

3.1 Elementary properties of z-transform

In this section we list some elementary properties of z-transform which follow
from the basic definitions. Here, 5 € C andn, m € N.
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 Z(afi(n) £ Bfa(n)) = aZ(fi(n)) £ BZ(f2(n)).

o 2(f(n —m)H(n —m)) = ="2(f(n)).

o 2(f(n+m)) = 2™ (Z(f(n)) — Sy f(k)2™F). In particular
Z(f(n+1)) = 2F(z) — 2f(0),

Z(f(n+2)) = 22F(z) — 22f(0) — zf(1), and
Z(f(n+3)) =2°F(2) — 2°f(0) — 22 f(1) — 2£(2).

o limy o f*(¢) = lim, o F(2).

o limy .o f*(¢) = lim,_; =2 F(2).

o If f(n) = f(n— N),i.e. the sampled data is periodic with peridyd then

_ Yo fR)t

1—2z=N

2(f(n))

3.2 A table of z-transforms

23

In the following list we describé’(z) = >, f(n)z~", wheref(n) is the given

function. Here again € C andn, m € N.

o If f(m)=aandf(n)=0forn #m,thenF(z) =az"".

2z

z—1
z

EEEE

e Z(1) =

e Z(n) =
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o 2(z+1)
e Z(n) = 1)
z
2(e2™) = .
® (6 ) »— e
on ze®
* 2ne™) = e
‘ zsin «
e Z(sinan) = 224 1—2zcosa
2(z — cos @)
e Z(cosan) = 2241 —92zcosar
2
o Z(«x )_z—Oz.
. az
e Z(na ):(z—Oé)2
a™ oz
.Z(H):e/

e 2> (k) =
o 2> Al — K) = Fi(2)Fo2)

3.3 The inverse z-transform

The z-transform of a given sequence is unique. To find the fungtian when
F(z) is given we can employ one of the following three methods:

Power series method
Using the description fof'(z) we try to write it in the form

Then
f(n) = ap.

It is in general difficult to find a closed formula for the Laurent series expansion
of F'(z), but when it is possible to do so this method works well.
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Example:-3.10If F'(z) = z/(z — «), find f(n).

Solution:

and hencef(n) = o™.

Partial fractions method
This method works whe#'(z) is a rational function ot. You convertF'(z) to a
partial fraction form and then recognize the parts from a z-transform table.

Observe that most forms of ration&l(z) has the same degree in the numerator
as the denominator. In such cases you should start&(ith/ z, obtain its partial
fraction form, and multiply both sides byto obtain the required form faf'(z).

2
Example:-3.11Find f(n) whenF'(z) = m
Solution:
Fz) =
z (z+1)(z2—-2)
112
- 3z41 3z2-2
1 z 2 z
F — _ p—
(2) 5241 32-2

= (1)) + 5227

(_l)n + 2n+1

oy =

), and

The residue method
This method is summarized in your text book, [2, Exercise 9, page 157]. As a
result it can be shown that if(z) is the z-transform of (n), then
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f(n) L/Cz”_lF(z)dz

= om

whereC' is a closed contour including the disk] < R in its interior, where
|z| > R is the region of convergence, or the region of analyticity, for the function
F(z). This integral is then evaluated using residue theory. i.e.

f(n) = Res(z""'F(2)).

Example:-3.12Find f(n) if its z-transform isF'(z) = 42/(32? — 2z — 1).

Solution: I?:eliz”‘lF(z)) = 1, ZIS_%%(z”‘lF(z)) = —(=1/3)". Sum of the
residues id — (—1/3)", which is the expression fgf(n).

3.4 Solving difference equations

A difference equations is an equation of the form
aof(n) +arf(n+ 1)+ +acf(n+k) = g(n k)

where theq;'s are constantsy(n, k) is a given function, and we try to find.
These equations are also known as recurrence equations. Note that in the above
set up you must specify(0), ..., f(k — 1) to find f.

To solve such an equation using z-transform, you take the z-transform of both
sides of the equation to obtain an algebraic equatiafi(if). You solve forF'(z)
from this equation and take the inverse z-transform to find

Example:-3.13Find a closed form expression for the general term of the Fi-
bonacci sequence which is defined By = F, = 1 andF,, + F,.1 = F,.0
forn > 1.

Solution: We definef(n) = F, .1 for n > 0. Then recurrence equation becomes
f(n)+ f(n+1) = f(n+2)with f(0) = f(1) = 1. Using the list of elementary
z-transforms we find that transforming both sides of this equation gives
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F(2)+ (2F(2) — 2) = 2°F(2) — 2* — 2.

Solving this forF'(z) we find

PE) = 5= - <¢ +¢1/¢> st (cb}r/f/qﬁ) e

14++5
9

10 = (5557) 0+ (737) 5

Sincef(n) = F,11, we obtain the following closed form formula for the general
term of the Fibonacci sequence:

F, = % ((;S" — (—%)n> , forn > 2.

where¢ = is the Golden Ratio. Applying inverse z-transformAo:z)

we find
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Example:-3.14[5, Ex-5 p94] Solve the following difference equation:
f(n+2)—4f(n+1)+4f(n) =2" with f(0) =1, f(1) = —1.

Solution: Apply z-transform to both sides of this equation. Note first that:
Z(f(n)) = F(z),

(fin+1)) = zF(z2) —zf(0) = 2F(2) — z,

(f(n+2)) = 22°F(2) = 22f(0) — 2f(1) = 2°F(2) — 2* + 2,

Z
22" = .

Z
Z

The difference equation then becomes

_ 92 (2 —5y) =
(z = 2)°F(z) — (2 = 5z2) o
and solving forF'(z) we find
22— 722+ 11z

Fz) = (z —2)3

The residue method to find the inverse z-transform of this function says that
f(n) = RGZSz”_lF(z).
zZ=

. : : (2
This residue is equal tg% whereg(z) = 2" 1(2* — 7% + 112).

Taking successive derivatives gives
p(z) = 2" -7 112"
$(z) = (n+2)2"" —T(n+1)2" + 1nz""1,
¢"(z) = (n+2)(n+1)2" —7(n+1)nz"" + 1ln(n — 1)2"2,
2" ((n+2)(n+1)2° = 7(n + 1)nz + 11in(n — 1))

and putting inz = 2 gives
¢"(2) = 2"7%(n*—13n +8). Hence
¢//(2)

f(n) = 5 =2"3(n? — 13n +38).
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Example:-3.15[4, Ex-5 p371] Solve the following difference equation:
inte — 4ipe1 + i, = 0, Wherei; = 3ip — V/R andiy, V and R are constants.

Solution: Let /(=) denote the z-transform af.

Z(in) = 1(z),
Z(iny1) = zI(z) — zio,
Lling) = 221(2) — 2%y — 20y,

= 22I(2) — 2%y — 2(ip — V/R).
The difference equation becomes
221(z) — 2%ip — 2(3ip — V/R) — 421 (2) + 4zig + I(2) = 0

from which we find ) .
102° — (g + 5) 2
I(z) _ 0 ( 0 R)
22 — 4z 41
The residue method to invert this is easier than the other methods. The function
I(z) has two simple poles at

= 2 — /3 and

An easy calculation gives

o~ (o %)

Resz" 'I(z) = 2" and
2 =21 ( ) _2\/§ 1
_ ioz2 — (io + 1)
Resz"'I(z) = 2,
2 = 29 ( ) 2\/5 2
Hence we get
in = Resz" 'I(z)+ Resz" 'I(z), n>1
z=z1 Z =22
ety m-(0th)
_2\/3 1 2\/3 29
b n+1 n+1 n n V1 n n
= —= (" —=z +(&5 — %)+t 5—F= (3 — %
5o (T =)+ (& =) + o o~ 2)

lIn/2]l -
. n+1 kon—2k n kon—2k—1
- Z(2k+1>32 > oh+1 )32

v [[(n—1)/2|| n
o kon—2k—1
pl X (),

where||m/|| stands for the greatest integer which is less than or equal to
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The first few values of,, are as follows:

7:1:31'0—%, Z2:117,0—4%,
iy =41ip — 15 %, ig = 153149 — 56 %,
is = 571ip — 209 %, is = 213115 — 780 %,

110 = 413403 7y — 151316 %, 190 = 216695104121 ¢y — 79315912984 %

Example:-3.16Suppose you deposit millions of TL to a bank savings account
each month. The bank gives yd00c per cent interest per month, whére< ¢ <
1. Find how much money you will have at the end of thé&h month.

Solution: Let f(n) denote the amount of money you will have at the end of
the n-th month. You start withf(0) = m, which means that you first deposit
millions of TL, so haven millions TL to begin with. At the end of the first month
you earn(1 + ¢)m millions of TL and deposiin millions TL more yourself, so

at the end of the first month you hayél) = m (1 + (1 + ¢)) millions TL at the
bank.

Arguing similarly we see that the recursive relation that we have to solve is
f(n+1)=1+c¢)f(n)+m, with f(0)=m.

Since this is an easy problem we will demonstrate the implementation of four dif-
ferent methods in solving it.
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Induction Method: Use induction to show that
fn) = (14" =1) ™ for n=0,1,2,..
C

The next three methods involve the z-transform technique. Take the z-transform
of the given recursion equation, solve f6(z) and find the inverse z-transform of
the solution. As usual we have

Z(f(n) = F(2),
Z(f(n+1)) = zF(z) — 2f(0)

mz
2(m) =
and the recursion equation becomes
2F(2) — 2m = (1+ ) F(2) + Z”izl.
Solving this forF'(z) gives
F(z) = Z m.

(z—=1)(z—=(1+0)
Now we will demonstrate the use of the three methods of inversion on this func-
tion.

Power Series Method:

F(z) =

= )m

and hence the coefficient of =" gives the required functiofi(n).
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Partial Fractions Method:

Fla) = <z—1><z—<1+c>>]zm

1 1 +1+C 1
= |—= zm
| cz—1 c z—(1+0)
1z l+¢ z
— |-+
cz—1 c z—(1+0¢)

. —%Z(l)—l—@Z((l—i—c)")
B Z([(l—kc)”:—l]m)'
fy = 2t

Residue Method: We note that" ' F(z) =

its residues we find

GC-Diz—(1+0) Calculating

Res(="'F()) = —7.
- (I 40o"'m
Res (71F(s) =

Finally, adding up the residues we find the expected formula

[(L+ )" = 1m

f(n) =

3.5 Unsorted exercises

These exercises are mostly taken from [4, 5, 8].

Determine the z-transform of the following samples:

22 — zcosh

Exercise:-1cosh an. Ans: )
22 —2zcosha +1

sinh av

Exercise:-2sinh an. ANS: )
smhvan 22 —2zcosha +1
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Determine the inverse z-transform of the following functions:

z
Exercise:-3——. Ans: n(3"1).
Exercise:-4 - ) AnS: sin n—W.
z22 41 2
4z 1\"?2 nmw
Exercise:-5 . ANS: (—) sin —.
422 —22¢/3+1 2 6
223
Exercise:-6 ———. Ans: (n? + 3 2)2m,
EEE (n®+ 3n + 2)
Exercise:-7z (e'/* — 1). Ans:1/(n + 1)
. 2 2n—1
Exercise:-8sinh —. Ans: (1 —(=1)") -
z n!

Solve the following difference equations:
Exercise:-9f(n + 1) +2f(n) = (—1)", with f(0) = —2.
Ans: f(n) = (—1)" — 3(=2)".
Exercise:-10x(n + 2) + 5z(n + 1) + 6z(n) = 3, with z(0) = -2, z(1) = 1.
Ans: z(n) = (1/4) — 6(—2)" + (15/4)(—3)".
Exercise:-112f(n + 3) — 3f(n + 2) + f(n) = 0, with f(0) = 0, f(1) = 1,
f(2)=—4. Ans: f(n) = —(8/3)(—1/2)" + (8/3) — 3n.
Exercise:-12x(n + 2) — 2z(n + 1) + z(n) = 0, with 2(0) = A, z(1) = B.
Ans:z(n) =A+ (B—A)n
Exercise:-13y(n 4 2) — V3y(n + 1) + y(n) = 0, with y(0) = 1, y(1) = V/3.
Ans: y(n) = cos(nw/6) + v/3sin(nr/6).
Exercise:-14a(n + 2) — 5a(n + 1) 4+ 6a(n) = 1, with a(0) = 2, a(1) = 3.
Ans:a(n) = (1 — 3" +2"2) /2.
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