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1 Introduction

These notes are intended to guide the student through problem solving using
Laplace and z-transform techniques and is intended to be part of MATH 206
course. These notes are freely composed from the sources given in the bibli-
ography and are being constantly improved. Check the date above to see if this is
a new version.

You are welcome to contact me through e-mail if you have any comments on these
notes such as praise, criticism or suggestions for further improvements.
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2 Laplace Transformation

The main application of Laplace transformation for us will be solving some dif-
ferential equations. A differential equation will be transformed by Laplace trans-
formation into an algebraic equation which will be solvable, and that solution will
be transformed back to give the actual solution of the DE we started with.

We define theLaplace Transform of a functionf : [0,∞) → C as

L(f(t)) =

∫ ∞

0

e−stf(t)dt for s ∈ C

We sometimes useF (s) to denoteL(f(t)) if there is no confusion. But beware of
conflicting notation in the literature.

Euler1 was the first one to use this transformation to solve certain differential
equations in 1737. Later Laplace2 independently used it in his bookThéorie Ana-
lytique de Probabilit́esin 1812, [6, p285].

2.1 Existence of Laplace Transformation

It is clear thatL(f) does not exist for every functionf . For example it can be
easily verified thatL(et2) does not exist, i.e. the associated integral clearly di-
verges. HoweverL exists for a large class of functions. For example consider the
following class of functions:

A function f : [0,∞) → C is said to be ofexponential order a if there are
positive real constantsM , T anda such that|f(t)| ≤ Meat for all t ≥ T .

L(f) exists iff is integrable on[0, b] for everyb > 0 andf is of exponential order
a for somea > 0. In this caseF (s) is defined if and only ifRe s > a. Moreover
observe from the definition thatlim

Re s→∞
F (s) = 0.

A word of relief: We will basically be using Laplace transform techniques to
solve differential equations. Most differential equations with initial values will

1Leonhard Euler 1707-1783.
2Pierre-Simon Laplace 1749-1827.
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have a unique solution, see for example [7, p498-Thm 10.6 and p501-Thm 10.8].
We therefore formally apply Laplace transform techniques, without checking for
validity, and if in the end the function we find solves the differential equation then
it is thesolution. For this reasons most tables of Laplace transforms do not give
the range of validity and are therefore wrong per se but perfectly acceptable given
the overall purpose.

2.2 Elementary Properties of Laplace Transformation

Before we start calculating the Laplace transformation of any function we can
derive some results which reflect our expectations fromL(f) using only the ele-
mentary properties of integrals.

Supposeα, β ∈ C andf, g functions for which Laplace transformation exists.
Then:

• L(αf(t) + βg(t)) = αF (s) + βG(s). (Linearity)

• L(eαtf(t)) = F (s− α). (Shift property)

• Supposef and all its derivatives up to and including ordern are continuous
on [0,∞) with f and each derivative having Laplace transformation. Then

L(f (n)(t)) = snF (s)− sn−1f(0)− · · · − sn−k−1f (k)(0)− · · · − f (n−1)(0).

In particular

L(f ′(t)) = sF (s)− f(0),

L(f ′′(t)) = s2F (s)− sf(0)− f ′(0).

• If f is continuous on(0,∞), thenL

(∫ t

0

f(u)du

)
= F (s)/s.

• If f is continuous on(0,∞), thenL(tnf(t)) = (−1)nF (n)(s).
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2.3 Transforms of some elementary functions

Before we apply Laplace transformation techniques to differential equations we
need to actually see the transformation of some functions. We generally need
some tables listing the Laplace transforms of some elementary functions. Then
using the properties listed in the previous section we can find the Laplace trans-
formation of most functions.

We begin by a table where each entry can be found by direct integration, using the
definition of the Laplace transformation.

In the following list,α andβ are complex constants andn is a nonnegative integer.

• L(α) =
α

s
.

• L(t) =
1

s2
.

In generalL(tn) =
n!

sn+1
.

• L(eαt) =
1

s− α
, whereRe s > Re α.

• L(sin αt) =
α

s2 + α2
, whereRe s > −Im α.

• L(cos αt) =
s

s2 + α2
, whereRe s > −Im α.

• L(sinh αt) =
α

s2 − α2
.

• L(cosh αt) =
s

s2 − α2
.

The next three formulas follow from the general propertyL(tnf(t)) = (−1)nF (n)(s).

• L(t sin αt) =
2αs

(s2 + α2)2
.
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• L(t cos αt) =
s2 − α2

(s2 + α2)2
.

• L(te−αt) =
1

(s + α)2
, whereα > 0.

In generalL(tne−αt) =
n!

(s + α)n+1
, whereα > 0.

The next formulas follow from the shift propertyL(eαtf(t)) = F (s− α).

• L(e−αt sin βt) =
β

(s + α)2 + β2
, whereα > 0.

• L(e−αt sinh βt) =
β

(s + α)2 − β2
, whereα > 0.

• L(e−αt cos βt) =
s + α

(s + α)2 + β2
, whereα > 0.

• L(e−αt cosh βt) =
s + α

(s + α)2 − β2
, whereα > 0.

2.4 Inverse Laplace Transformation

If L(f(t)) = F (s), thenf(t) is called the inverse Laplace transform ofF (s) and
is denoted byL−1(F (s)) = f(t).

If we assume that the functions whose Laplace transforms exist are going to be
taken as continuous then no two different functions can have the same Laplace
transform. Functions that differ only at isolated points can have the same Laplace
transform. Such uniqueness theorems allow us to find inverse Laplace transform
by looking at Laplace transform tables.

Example:-2.1Find the functionf(t) for whichL(f(t)) =
2s + 3

s2 + 4s + 13
.

Solution: By completing the denominator to a square and playing with the nu-
merator we writeL(f(t)) as

2s + 3

s2 + 4s + 13
=

2(s + 2)

(s + 2)2 + 9
− 1

(s + 2)2 + 9
.
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Here we try to recognize each part on the right as Laplace transform of some func-
tion, using a table of Laplace transforms. For example we note thatL(e−2t cos(3t)) =

s+2
(s+2)2+9

andL(e−2t sin(3t)) = 3
(s+2)2+9

. Using this information together with the
fact that Laplace transform is a linear operator we find that

L−1

{
2s + 3

s2 + 4s + 13

}
= L−1

{
2(s + 2)

(s + 2)2 + 9

}
− L−1

{
1

(s + 2)2 + 9

}

= 2e−2t cos(3t)− 1

3
e−2t sin(3t)

= f(t).

Note: Inverse Laplace of a function can also be found using integrals and residues.
This is given in your textbook [3, sections 66-67].

2.5 Convolution

Whenf(t) andg(t) are defined fort > 0, and are piecewise continuous, then their
convolution, denoted byf ∗ g, is defined as

(f ∗ g)(t) =

∫ t

0

f(t− u)g(u)du, for 0 ≤ t < ∞.

Convolution has some immediate properties following from the above definition:
1. f ∗ g = g ∗ f .
2. f ∗ (cg) = (cf) ∗ g = c(f ∗ g), wherec is a constant.
3. f ∗ (g + h) = f ∗ g + f ∗ h.
4. f ∗ (g ∗ h) = (f ∗ g) ∗ h.

In particular the following property is useful:

L−1 {F (s)G(s)} = f ∗ g whereL(f) = F andL(g) = G.

In other words;
L((f ∗ g)(t)) = F (s)G(s).

Example:-2.2An equation of the form

x(t) = f(t) +

∫ t

0

h(t− u)x(u)du
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wheref and h are known functions andx is the unknown function is called
Volterra3 integral equation. Note that the given integral is a convolution integral.
Letting capital letters denote the Laplace transform of the corresponding function
we apply Laplace operator to each side of the Volterra equation to obtain

X(s) = F (s) + H(s)X(s).

Solving forX(s) we get

X(s) =
F (s)

1−H(s)
,

which can theoretically be inverted by Laplace transformation to give the required
x(t).

Example:-2.3Solve the Volterra equation

x(t) = e−t − 4

∫ t

0

cos 2(t− u)x(u)du.

Solution: Applying Laplace operator to each side we get

X(s) =
1

s + 1
− 4X(s)

s

s2 + 4
.

Solving forX(s) we get

X(s) =
s2 + 4

(s + 1)(s + 2)2

=
5

s + 1
− 4

s + 2
+

8

(s + 2)2
.

Applying Laplace inverse transformation to both sides of this equation we finally
get

x(s) = 5e−t − 4e−2t − 8te−2t.

3Vito Volterra 1860-1940.
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2.6 Heaviside unit function

The Heaviside unit function is denoted and defined as

H(t) =

{
0, if t < 0;
1, if t ≥ 0.

0

1

t

By directly integrating the Heaviside4 function we find that

L(H(t− a)) =
e−sa

s
for a > 0.

In particular

L(H(t)) =
1

s
.

Compare this to the case where we apply Laplace operator tof(t) = 1 for t > 0.

Again by direct integration we find the important shift property

L(H(t− a)f(t− a)) = e−asL(f(t)), for a > 0.

Example:-2.4

L(H(t− 2) cos(t− 2)) =
se−2s

s2 + 1
.

Example:-2.5

L(H(t− 2) sin(t− 2)) =
e−2s

s2 + 1
.

Example:-2.6

L(H(t− 2) cos(t)) = L(H(t− 2) cos ((t− 2) + 2))

= L(H(t− 2) (cos(t− 2) cos(2)− sin(t− 2) sin(2)))

= cos(2)L(H(t− 2) cos(t− 2))− sin(2)L(H(t− 2) sin(t− 2))

=

(
s cos(2)

(s2 + 1)
− sin(2)

(s2 + 1)

)
e−2s.

4Oliver Heaviside 1850-1925.
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2.7 The square wave function

The square wave function, for somea > 0, is defined as

f(t) =

{
1, for 2na ≤ t < (2n + 1)a, n ∈ N;

−1, for (2n + 1)a ≤ t < (2n + 2)a, n ∈ N.

0 2
t

It follows thatf(t) = H(t) + 2
∞∑

n=1

(−1)nH(t− na) and consequently

L(f(t)) =
1

s
(1 + 2

∞∑
n=1

(−1)ne−nas)

=
1

s

(
1− 2e−as

1 + e−as

)
=

1

s

(
1− e−as

1 + e−as

)

=
1

s
tanh

(as

2

)
.

2.8 Impulse function

Define a functionfk(t) for some positive numberk as
follows:

fk(t) =

{
1
k
, for 0 ≤ t ≤ k;

0, for t > k.
0

1

0.25 t

Note that the area under the graph offk is 1. If we take the limit offk ask goes to
zero, we end up with a function which is zero whent 6= 0 and has infinite height
at 0, but still with total area1 under the graph, since it is the limiting position of
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graphs with area1. We denote this new function byδ(t) and call it the impulse
function or Dirac5 delta function.

To find the Laplace transform of the impulse function we start with the Laplace of
fk:

L(fk(t)) =

∫ ∞

0

fk(t)e
−stdt

=

∫ k

0

1

k
e−stdt =

[
−e−st

sk

]k

0

= − 1

sk
(e−sk − 1) = 1− sk

2!
+

(sk)2

3!
+ · · · .

Taking the limit ask → 0 we find

L(δ(t)) = 1.

An impulse of sizea is represented byaδ(t) and an impulse which is delayed by
timeT is denoted byδ(t−T ). Recalling the shift property, i.e.L(H(t−T )f(t−
T )) = e−sT L(f(t)), we can immediately write the Laplace of a delayed impulse
function of a certain size:

L(aδ(t− T )) = aL(H(t− T )δ(t− T )) = ae−sT .

Example:-2.7Solve the initial value problem

x′′(t) + 3x′(t) + 2x(t) = 5δ(t− 2)

wherex(0) = 4 andx′(0) = 0.

Solution: Transforming by Laplace we get
(s2 + 3s + 2)X(s)− 4s− 12 = 5e−2s. Solving forX(s) we find

X(s) =
5e−2s + 4s + 12

(s + 1)(s + 2)
.

Here we observe that
1

(s + 1)(s + 2)
=

1

s + 1
− 1

s + 2
,

s

(s + 1)(s + 2)
=

−1

s + 1
+

2

s + 2

5Paul Adrien Maurice Dirac 1902-1984.
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and recall the formulas

L(e−at) =
1

s + a
, and

L(H(t− k)f(t− k)) = e−ksL(f(t)).

Applying inverse Laplace transformation with these formulas in mind we get

x(t) = 5(e−(t−2) − e−2(t−2))H(t− 2) + 4(2e−2t − e−t) + 12(e−t − e−2t)

= 5(e−(t−2) − e−2(t−2))H(t− 2)− 4e−2t + 8e−t.

2.9 Unsorted solved problems

Problem:-1 FindL(g(t)), where

g(t) =

{
0 for 0 < t < 1

3t for 1 ≤ t
0

5

1.5
t

Solution: First recall thatL(H(t− a)f(t− a)) = e−asF (s). We therefore write
3t in shifted form:3t = 3(t− 1) + 3. Let f(t) = 3t + 3. Thenf(t− 1) = 3t and
H(t− 1)f(t− 1) = g(t), for t > 0. Hence

L(g(t)) = L(H(t− 1)f(t− 1)) = e−sL(f(t))

= e−sL(3t + 3)

= e−s

(
3

s2
+

3

s

)
.

Problem:-2 FindL(g(t)), where

g(t) =

{
0 for 0 < t < π

cos t for π ≤ t

0 3.5
t
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Solution: Observe thatcos t = − cos(t − π). Settingf(t) = − cos t, we note
thatg(t) = H(t− π)f(t− π). So

L(g(t)) = L(H(t− π)f(t− π)

= e−πsL(f(t))

= e−πs −s

s2 + 1
.

Problem:-3 Find the inverse Laplace transform ofF (s) =
1

s3 − s2 + s− 1
.

Solution:

F (s) =
1

(s− 1)(s2 + 1)

=
1

2

(
1

s− 1
− s

s2 + 1
− 1

s2 + 1

)
.

Hence

L−1(F (s)) =
1

2

(
L−1(

1

s− 1
)− L−1(

s

s2 + 1
)− L−1(

1

s2 + 1
)

)

=
1

2

(
et − cos t− sin t

)
.

Problem:-4 Find the inverse Laplace transform ofF (s) =
2

s
+

e−3s

s2
.

Solution:

L−1(F (s)) = L−1(
2

s
) + L−1(

e−3s

s2
)

= 2 + H(t− 3)(t− 3).

Problem:-5 Solvef ′′(t) + f(t) = t, wheref(0) = 1, f ′(0) = −2.
Solution:

L(f ′′(t)) + L(f(t)) = L(t)
(
s2F (s)− sf(0)− f ′(0)

)
+ F (s) =

1

s2
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s2F (s)− s + 2 + F (s) =
1

s2
.

Solving forF (s);

F (s) =
1

s2
+

s

s2 + 1
− 3

s2 + 1
,

and applying inverse Laplace transform

L−1

(
1

s2
+

s

s2 + 1
− 3

s2 + 1

)
= t + cos t− 3 sin t = f(t).

Problem:-6 Solve the initial value problemy′′(t)+y(t) = f(t), y(0) = y′(0) = 0,
wheref(t) = n + 1 for nπ ≤ t < (n + 1)π, n ∈ N, i.e. f(t) =

∑∞
k=0 H(t− kπ).

Solution: We plan to take the Laplace transform of both sides of the differential
equation. For this observe that

L(y′′(t)) = s2Y (s)− sy(0)− y′(0) = s2Y (s)

L(y(t)) = Y (s)

L(f(t)) = L

( ∞∑

k=0

H(t− kπ)

)

=
∞∑

k=0

L(H(t− kπ)) =
∞∑

k=0

e−kπs

s
.

Putting these together, the differential equation becomes

s2Y (s) + Y (s) =
1

s

∞∑

k=0

e−kπs

and solving forY (s)

Y (s) =

(
1

s(s2 + 1)

) ∞∑

k=0

e−kπs

=
1

s

∞∑

k=0

e−kπs − s

s2 + 1

∞∑

k=0

e−kπs.

Before applying the inverse Laplace transform to both sides recall that
L(H(t− a) cos(t− a)) = ( s

s2+1
)e−as.
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Define a new function

g(t) =
∞∑

k=0

H(t− kπ) cos(t− kπ).

We can finally apply the inverse Laplace transform toY (s) to find

L−1(Y (s)) = L−1(
1

s

∞∑

k=0

e−kπs)− L−1(
s

s2 + 1

∞∑

k=0

e−kπs)

y(t) = f(t)− g(t).

Problem:-7 Solve the initial value problemy′′(t) + y(t) = 3 sin 2t, t ∈ [0,∞],
y(0) = 1, y′(0) = −2.

Solution: LettingY (s) = L(y(t)), note that

L(y′′(t)) = s2Y (s)− sy(0)− y′(0)

= s2Y (s)− s + 2,

L(sin 2t) =
2

s2 + 4
.

Taking the inverse Laplace of both sides of the differential equation we get

s2Y (s)− s + 2 + Y (s) =
6

s2 + 4
.

Solving forY (s) we get

Y (s) =
s

s2 + 1
− 2

s2 + 4
.

Taking the inverse Laplace transform gives

y(t) = cos t− sin 2t.
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Problem:-8 Define a functionf(t) as

f(t) =





0 if t < 1
1 if 1 ≤ t < 2
2 if 2 ≤ t < 3
1 if 3 ≤ t < 4
0 if 4 ≤ t

0

2

5t

Note thatf(t) = H(t− 1) + H(t− 2)−H(t− 3)−H(t− 4).
Solve the initial value problemy′′ − 3y′ + 2y = f(t), y(0) = y′(0) = 0.

Solution: Taking the Laplace transform of both sides gives

s2Y − 3sY + 2Y =
1

s
(e−s + e−2s − e−3s − e−4s).

SetA = (e−s + e−2s − e−3s − e−4s). Then solving forY gives

Y =
A

s(s− 1)(s− 2)

=
1

2

A

s
− A

s− 1
+

1

2

A

s− 2
.

Recall that

L(H(t− a)eb(t−a)) =
eas

s− b
.

Taking the inverse Laplace transform ofY gives

y(t) =
2∑

k=1

(
1

2
− et−k +

1

2
e2(t−k)

)
H(t− k)

−
4∑

k=3

(
1

2
− et−k +

1

2
e2(t−k)

)
H(t− k)
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Problem:-9 Find the solution of the system

dx

dt
− 6x + 3y = 8et

dy

dt
− 2x− y = 4et

with initial conditionsx(0) = −1, y(0) = 0.

Solution: Taking the Laplace transform of the system and simplifying we find

(s− 6)X + 3Y =
−s + 9

s− 1

−2X + (s− 1)Y =
4

s− 1

Solving forX andY we find

X =
−s + 7

(s− 1)(s− 4)
=

−2

s− 1
+

1

s− 4

Y =
2

(s− 1)(s− 4)
=
−2/3

s− 1
+

2/3

s− 4
.

Applying inverse Laplace transform to these equations gives

x(t) = −2et + e4t

y(t) = −2

3
et +

2

3
e4t.
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Problem:-10Find that solution of
ux(x, t) = 2ut(x, t) + u(x, t), u(x, 0) = 6e−3x, which is bounded forx > 0,
t > 0.
Solution: First note that

L(ux(x, t)) =

∫ ∞

0

e−st ∂u(x, t)

∂x
dt

=
d

dx

∫ ∞

0

e−stu(x, t)dt

=
d

dx
U(x, s).

It follows from general properties of Laplace transform that

L(ut(x, t)) = sU(x, s)− u(x, 0).

Putting these together, the given PDE transforms to

d

dx
U − (2s + 1)U = −12e−3x.

Multiplying both sides by the integration factore−(2s+1)x gives

d

dx
(Ue−(2s+1)x) = −12e−(2s+4)x.

Integrating this gives

Ue−(2s+1)x =
6

s + 2
e−(2s+4)x + c,

or

U =
6

s + 2
e−3x + ce(2s+1)x.

Sinceu(x, t) must stay bounded asx → ∞, likewiseU(x, s) must stay bounded
whenx →∞. So we must choosec = 0, and then we have

U(x, s) =
6

s + 2
e−3x,

and hence

u(x, t) = 6e−2t−3x.
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2.10 Unsorted Exercises

These exercises are taken from [5, 7, 8].

Exercise:-1 FindL(5t− 2).

Ans:
5

s2
− 2

s
.

Exercise:-2 FindL(t3 + 8e−t + 1).

Ans:
6

s4
+

8

s + 1
+

1

s
.

Exercise:-3 FindL(a sin(at) + b sin(bt)).

Ans:
a2

s2 + a2
+

b2

s2 + b2
.

Exercise:-4 FindL(cos(at− α)).

Ans:
s cos α + a sin α

s2 + a2
.

Exercise:-5 FindL−1(
1

s4
).

Ans: t3/6.

Exercise:-6 FindL−1(
s + 1

s3
).

Ans: t + t2/2.

Exercise:-7 FindL−1(
2s− 5

s2 + 9
).

Ans: 2 cos(3t)− (5/3) sin(3t).

Exercise:-8 FindL−1(
7!

(s− 3)8
).

Ans: t7e3t.

Exercise:-9 Solvey′′ + 5y′ + 6y = 3, with y(0) = 2, y′(0) = 0.
Ans: y = (1/2) + (9/2)e−2t − 3e−3t.

Exercise:-10 Solvey′′ + 2y′ + y = sin t, with y(0) = 3, y′(0) = 1.
Ans: y = (9/2)te−t + (7/2)e−t − (1/2) cos t.
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Exercise:-11([5, p50]) Solve the differential equation
d2x

dt2
+ 3

dx

dt
+ 2x = 5δ(t− 2), with x(0) = 4, x′(0) = 0.

Ans: 5(e−(t−2) − e−2(t−2))H(t− 2) + 8e−t − 4e−2t.

Exercise:-12[7, p456] Solve the following linear system using Laplace trans-
form technique:

dx

dt
+ y = 3e2t

dy

dt
+ x = 0

x(0) = 2 y(0) = 0.

Ans: x = −et

2
+

e−t

2
+ 2e2t, y =

et

2
+

e−t

2
− e2t.

Exercise:-13[7, p457] Solve the following linear system using Laplace trans-
form technique:

2
dx

dt
+

dy

dt
− x− y = e−t

dx

dt
+

dy

dt
+ 2x + y = et

x(0) = 2 y(0) = 1.

Ans: x = 8 sin t + 2 cos t, y = −13 sin t + cos t +
et

2
− e−t

2
.
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Exercise:-14[7, p457] Solve the following linear system using Laplace trans-
form technique:

d2x

dt2
− 3

dx

dt
+

dy

dt
+ 2x− y = 0

dx

dt
+

dy

dt
− 2x + y = 0

x(0) = 0 x′(0) = 0 y(0) = −1.

Ans: x = −1 + 2et − e2t, y = −2 + et.

Exercise:-15[8, p484] Solve the following differential equation using Laplace
transform technique:

f ′′(t)− f ′(t)− 2f(t) = e−t sin 2t, with f(0) = 0 andf ′(0) = 2.

Ans: f(t) =
28

39
e2t − 5

6
e−t − 1

13
e−t sin 2t +

3

26
e−t cos 2t.
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3 The z-transform

Supposef(t) is a continuous function and we sample this function at time inter-
vals ofT , thus obtaining the data

f(0), f(T ), f(2T ), . . . , f(nT ), . . .

Recall that the impulse function att = T is denoted byδ(t− T ). If we denote by
f ∗(t) the sampled function we can write

f ∗(t) = f(0)δ(t) + f(T )δ(t− T ) + f(2T )δ(t− 2T ) + · · ·

=
∞∑

n=0

f(nT )δ(t− nT )

The Laplace transform of this function then becomes

F ∗(s) = L(f ∗(t))

=
∞∑

n=0

f(nT )L(δ(t− nT ))

=
∞∑

n=0

f(nT )e−nTs

If we now set

z = esT or equivalentlys =
1

T
log(z)

then we can define

F (z) =
∞∑

n=0

f(nT )z−n

This functionF (z) is called thez-transform of the discrete time signal function
f(nT ),

F (z) = Z(f(t)).

In other words

Z(f(t)) = F (z)

= F ∗(s) = F ∗(
1

T
log(z))

=

[
L

( ∞∑
n=0

f(nT )(δ(n− nT ))

)]

s= 1
T

log(z)

.

Sometimes, as a suggestive notation, we writeZ(f(nT )) instead ofZ(f(t)).
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Example:-3.8Find Z(H(nT )). Here we are sampling the functionf(t) = H(t),
the unit step function, or the Heaviside function, and obtaining the samplef(n) =
1 for all n ≥ 0.

Solution:

F (z) =
∞∑

n=0

1 z−n = 1 + z−1 + z−2 + · · ·

=
1

1− z−1
=

z

z − 1
.

Hence we find that
Z(H(nT )) =

z

z − 1
for |z| > 1.

Example:-3.9Find the z-transform of the sampled functionf(nT ) for f(t) = t,
(the ramp function).

Solution: We find thatf(nT ) = nT . Hence

F (z) = Tz−1 + 2Tz−2 + 3Tz−3 + · · ·
=

T

z(1− z−1)2

=
Tz

(z − 1)2
.

Hence

Z(nT ) =
Tz

(z − 1)2
, for |z| > 1.

3.1 Elementary properties of z-transform

In this section we list some elementary properties of z-transform which follow
from the basic definitions. Hereα, β ∈ C andn,m ∈ N.
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• Z(αf1(n)± βf2(n)) = αZ(f1(n))± βZ(f2(n)).

• Z(f(n−m)H(n−m)) = z−mZ(f(n)).

• Z(f(n + m)) = zm
(
Z(f(n))−∑m−1

k=0 f(k)zm−k
)
. In particular

Z(f(n + 1)) = zF (z)− zf(0),
Z(f(n + 2)) = z2F (z)− z2f(0)− zf(1), and
Z(f(n + 3)) = z3F (z)− z3f(0)− z2f(1)− zf(2).

• limt→0 f ∗(t) = limz→∞ F (z).

• limt→∞ f ∗(t) = limz→1
z−1

z
F (z).

• If f(n) = f(n−N), i.e. the sampled data is periodic with periodN , then

Z(f(n)) =

∑N−1
k=0 f(k)z−k

1− z−N
.

3.2 A table of z-transforms

In the following list we describeF (z) =
∑∞

n=0 f(n)z−n, wheref(n) is the given
function. Here againα ∈ C andn,m ∈ N.

• If f(m) = α andf(n) = 0 for n 6= m, thenF (z) = αz−m.

• Z(1) =
z

z − 1
.

• Z(n) =
z

(z − 1)2
.
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• Z(n2) =
z(z + 1)

(z − 1)3
.

• Z(eαn) =
z

z − eα
.

• Z(neαn) =
zeα

(z − eα)2
.

• Z(sin αn) =
z sin α

z2 + 1− 2z cos α
.

• Z(cos αn) =
z(z − cos α)

z2 + 1− 2z cos α
.

• Z(αn) =
z

z − α
.

• Z(nαn) =
αz

(z − α)2
.

• Z(
αn

n!
) = eα/z.

• Z(αnf(n)) = F (z/α).

• Z(
n∑

k=0

f(k)) =
zF (z)

z − 1
.

• Z(
n∑

k=0

f1(k)f2(n− k)) = F1(z)F2(z).

3.3 The inverse z-transform

The z-transform of a given sequence is unique. To find the functionf(n) when
F (z) is given we can employ one of the following three methods:

Power series method
Using the description forF (z) we try to write it in the form

F (z) =
∞∑

n=0

anz−n.

Then
f(n) = an.

It is in general difficult to find a closed formula for the Laurent series expansion
of F (z), but when it is possible to do so this method works well.
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Example:-3.10If F (z) = z/(z − α), find f(n).

Solution:

F (z) =
z

z − α
=

1

1− α/z

= 1 +
α

z
+

α2

z2
+

α3

z3
+ · · ·

=
∞∑

n=0

αnz−n,

and hencef(n) = αn.

Partial fractions method
This method works whenF (z) is a rational function ofz. You convertF (z) to a
partial fraction form and then recognize the parts from a z-transform table.

Observe that most forms of rationalF (z) has the same degree in the numerator
as the denominator. In such cases you should start withF (z)/z, obtain its partial
fraction form, and multiply both sides byz to obtain the required form forF (z).

Example:-3.11Findf(n) whenF (z) =
z2

(z + 1)(z − 2)
.

Solution:
F (z)

z
=

z

(z + 1)(z − 2)

=
1

3

1

z + 1
+

2

3

1

z − 2
.

F (z) =
1

3

z

z + 1
+

2

3

z

z − 2

=
1

3
Z((−1)n) +

2

3
Z(2n)

= Z(
(−1)n + 2n+1

3
), and

f(n) =
(−1)n + 2n+1

3
.

The residue method
This method is summarized in your text book, [2, Exercise 9, page 157]. As a
result it can be shown that ifF (z) is the z-transform off(n), then
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f(n) =
1

2πi

∫

C

zn−1F (z)dz

whereC is a closed contour including the disk|z| ≤ R in its interior, where
|z| > R is the region of convergence, or the region of analyticity, for the function
F (z). This integral is then evaluated using residue theory. i.e.

f(n) =
∑

Res(zn−1F (z)).

Example:-3.12Findf(n) if its z-transform isF (z) = 4z/(3z2 − 2z − 1).

Solution: Res
z=1

(zn−1F (z)) = 1, Res
z=-1/3

(zn−1F (z)) = −(−1/3)n. Sum of the

residues is1− (−1/3)n, which is the expression forf(n).

3.4 Solving difference equations

A difference equations is an equation of the form

a0f(n) + a1f(n + 1) + · · ·+ akf(n + k) = g(n, k)

where theai’s are constants,g(n, k) is a given function, and we try to findf .
These equations are also known as recurrence equations. Note that in the above
set up you must specifyf(0), ...,f(k − 1) to findf .

To solve such an equation using z-transform, you take the z-transform of both
sides of the equation to obtain an algebraic equation inF (z). You solve forF (z)
from this equation and take the inverse z-transform to findf .

Example:-3.13 Find a closed form expression for the general term of the Fi-
bonacci sequence which is defined byF1 = F2 = 1 andFn + Fn+1 = Fn+2

for n ≥ 1.

Solution: We definef(n) = Fn+1 for n ≥ 0. Then recurrence equation becomes
f(n) + f(n + 1) = f(n + 2) with f(0) = f(1) = 1. Using the list of elementary
z-transforms we find that transforming both sides of this equation gives
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F (z) + (zF (z)− z) = z2F (z)− z2 − z.

Solving this forF (z) we find

F (z) =
z2

z2 − z − 1
=

(
φ

φ + 1/φ

)
z

z − φ
+

(
1/φ

φ + 1/φ

)
z

z + 1/φ

whereφ =
1 +

√
5

2
is the Golden Ratio. Applying inverse z-transform toF (z)

we find

f(n) =

(
φ

φ + 1/φ

)
(φ)n +

(
1/φ

φ + 1/φ

)
(−1

φ
)n

=
1√
5

(
φn+1 − (−1

φ
)n+1

)
.

Sincef(n) = Fn+1, we obtain the following closed form formula for the general
term of the Fibonacci sequence:

Fn =
1√
5

(
φn −

(
−1

φ

)n)
, for n > 2.
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Example:-3.14[5, Ex-5 p94] Solve the following difference equation:
f(n + 2)− 4f(n + 1) + 4f(n) = 2n, with f(0) = 1, f(1) = −1.

Solution: Apply z-transform to both sides of this equation. Note first that:

Z(f(n)) = F (z),

Z(f(n + 1)) = zF (z)− zf(0) = zF (z)− z,

Z(f(n + 2)) = z2F (z)− z2f(0)− zf(1) = z2F (z)− z2 + z,

Z(2n) =
z

z − 2
.

The difference equation then becomes

(z − 2)2F (z)− (z2 − 5z) =
z

z − 2

and solving forF (z) we find

F (z) =
z3 − 7z2 + 11z

(z − 2)3
.

The residue method to find the inverse z-transform of this function says that

f(n) = Res
z=2

zn−1F (z).

This residue is equal to
φ′′(2)

2
whereφ(z) = zn−1(z3 − 7z2 + 11z).

Taking successive derivatives gives

φ(z) = zn+2 − 7zn+1 + 11zn,

φ′(z) = (n + 2)zn+1 − 7(n + 1)zn + 11nzn−1,

φ′′(z) = (n + 2)(n + 1)zn − 7(n + 1)nzn−1 + 11n(n− 1)zn−2,

= zn−2
(
(n + 2)(n + 1)z2 − 7(n + 1)nz + 11n(n− 1)

)

and putting inz = 2 gives

φ′′(2) = 2n−2(n2 − 13n + 8). Hence

f(n) =
φ′′(2)

2
= 2n−3(n2 − 13n + 8).
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Example:-3.15[4, Ex-5 p371] Solve the following difference equation:
in+2 − 4in+1 + in = 0, wherei1 = 3i0 − V/R andi0, V andR are constants.

Solution: Let I(z) denote the z-transform ofin.

Z(in) = I(z),

Z(in+1) = zI(z)− zi0,

Z(in+2) = z2I(z)− z2i0 − zi1,

= z2I(z)− z2i0 − z(i0 − V/R).

The difference equation becomes

z2I(z)− z2i0 − z(3i0 − V/R)− 4zI(z) + 4zi0 + I(z) = 0

from which we find

I(z) =
i0z

2 − (
i0 + V

R

)
z

z2 − 4z + 1
.

The residue method to invert this is easier than the other methods. The function
I(z) has two simple poles at

z1 = 2−
√

3 and

z2 = 2 +
√

3.

An easy calculation gives

Res
z = z1

zn−1I(z) =
i0z1 −

(
i0 + V

R

)

−2
√

3
zn
1 , and

Res
z = z2

zn−1I(z) =
i0z2 −

(
i0 + V

R

)

2
√

3
zn
2 ,

Hence we get

in = Res
z = z1

zn−1I(z) + Res
z = z2

zn−1I(z), n ≥ 1

=
i0z1 −

(
i0 + V

R

)

−2
√

3
zn
1 +

i0z2 −
(
i0 + V

R

)

2
√

3
zn
2 ,

=
i0

2
√

3

(
(zn+1

2 − zn+1
1 ) + (zn

1 − zn
2 )

)
+

V

R

1

2
√

3
(zn

1 − zn
2 )

= i0



‖n/2‖∑

k=0

(
n + 1
2k + 1

)
3k2n−2k −

‖(n−1)/2‖∑

k=0

(
n

2k + 1

)
3k2n−2k−1




−V

R



‖(n−1)/2‖∑

k=0

(
n

2k + 1

)
3k2n−2k−1


 ,

where‖m‖ stands for the greatest integer which is less than or equal tom.
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The first few values ofin are as follows:

i1 = 3 i0 − V
R
, i2 = 11 i0 − 4 V

R
,

i3 = 41 i0 − 15 V
R
, i4 = 153 i0 − 56 V

R
,

i5 = 571 i0 − 209 V
R
, i6 = 2131 i0 − 780 V

R
,

i10 = 413403 i0 − 151316 V
R
, i20 = 216695104121 i0 − 79315912984 V

R

Example:-3.16Suppose you depositm millions of TL to a bank savings account
each month. The bank gives you100c per cent interest per month, where0 < c <
1. Find how much money you will have at the end of then-th month.

Solution: Let f(n) denote the amount of money you will have at the end of
then-th month. You start withf(0) = m, which means that you first depositm
millions of TL, so havem millions TL to begin with. At the end of the first month
you earn(1 + c)m millions of TL and depositm millions TL more yourself, so
at the end of the first month you havef(1) = m (1 + (1 + c)) millions TL at the
bank.

Arguing similarly we see that the recursive relation that we have to solve is

f(n + 1) = (1 + c)f(n) + m, with f(0) = m.

Since this is an easy problem we will demonstrate the implementation of four dif-
ferent methods in solving it.
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Induction Method: Use induction to show that

f(n) =
(
(1 + c)n+1 − 1

) m

c
, for n = 0, 1, 2, ...

The next three methods involve the z-transform technique. Take the z-transform
of the given recursion equation, solve forF (z) and find the inverse z-transform of
the solution. As usual we have

Z(f(n)) = F (z),

Z(f(n + 1)) = zF (z)− zf(0)

= zF (z)− zm,

Z(m) =
mz

z − 1
,

and the recursion equation becomes

zF (z)− zm = (1 + c)F (z) +
mz

z − 1
.

Solving this forF (z) gives

F (z) =
z2

(z − 1)(z − (1 + c))
m.

Now we will demonstrate the use of the three methods of inversion on this func-
tion.

Power Series Method:

F (z) =
z2

(z − 1)(z − (1 + c))
m

=
1

(1− 1/z)(1− (1 + c)/z)
m

=

( ∞∑
n=0

1

zn

)( ∞∑
n=0

(1 + c)n

zn

)
m

=
∞∑

n=0

(
n∑

k=0

(1 + c)k

)
m

zn

=
∞∑

n=0

[(1 + c)n+1 − 1]m

c

1

zn
,

and hence the coefficient of1/zn gives the required functionf(n).
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Partial Fractions Method:

F (z) =

[
z

(z − 1)(z − (1 + c))

]
zm

=

[
−1

c

1

z − 1
+

1 + c

c

1

z − (1 + c))

]
zm

=

[
−1

c

z

z − 1
+

1 + c

c

z

z − (1 + c))

]
m

= −m

c
Z(1) +

(1 + c)m

c
Z((1 + c)n)

= Z(
[(1 + c)n+1 − 1]m

c
).

f(n) =
[(1 + c)n+1 − 1]m

c
.

Residue Method: We note thatzn−1F (z) =
zn+1m

(z − 1)(z − (1 + c))
. Calculating

its residues we find

Res
z = 1

(
zn−1F (z)

)
= −m

c
,

Res
z = 1 + c

(
zn−1F (z)

)
=

(1 + c)n+1m

c
.

Finally, adding up the residues we find the expected formula

f(n) =
[(1 + c)n+1 − 1]m

c
.

3.5 Unsorted exercises

These exercises are mostly taken from [4, 5, 8].
Determine the z-transform of the following samples:

Exercise:-1cosh αn. Ans:
z2 − z cosh α

z2 − 2z cosh α + 1
.

Exercise:-2sinh αn. Ans:
sinh α

z2 − 2z cosh α + 1
.
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Determine the inverse z-transform of the following functions:

Exercise:-3
z

(z − 3)2
. Ans: n(3n−1).

Exercise:-4
z

z2 + 1
. Ans: sin

nπ

2
.

Exercise:-5
4z

4z2 − 2z
√

3 + 1
. Ans:

(
1

2

)n−2

sin
nπ

6
.

Exercise:-6
2z3

(z − 2)3
. Ans: (n2 + 3n + 2)2n.

Exercise:-7z
(
e1/z − 1

)
. Ans: 1/(n + 1)!.

Exercise:-8sinh
2

z
. Ans: (1− (−1)n)

2n−1

n!
.

Solve the following difference equations:
Exercise:-9f(n + 1) + 2f(n) = (−1)n, with f(0) = −2.

Ans: f(n) = (−1)n − 3(−2)n.
Exercise:-10x(n + 2) + 5x(n + 1) + 6x(n) = 3, with x(0) = −2, x(1) = 1.

Ans: x(n) = (1/4)− 6(−2)n + (15/4)(−3)n.
Exercise:-112f(n + 3) − 3f(n + 2) + f(n) = 0, with f(0) = 0, f(1) = 1,
f(2) = −4. Ans: f(n) = −(8/3)(−1/2)n + (8/3)− 3n.
Exercise:-12x(n + 2)− 2x(n + 1) + x(n) = 0, with x(0) = A, x(1) = B.

Ans: x(n) = A + (B − A)n
Exercise:-13y(n + 2)−

√
3y(n + 1) + y(n) = 0, with y(0) = 1, y(1) =

√
3.

Ans: y(n) = cos(nπ/6) +
√

3 sin(nπ/6).
Exercise:-14a(n + 2)− 5a(n + 1) + 6a(n) = 1, with a(0) = 2, a(1) = 3.

Ans: a(n) = (1− 3n + 2n+2)/2.
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