Date: May 24, 2005; Tuesday Instructors: Sertöz and Özgüler Time: 16.00-18.00

NAME:
STUDENT NO:
\qquad

Math 206 Complex Calculus-Final Exam

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet.
Write your name on the top of every page.

Q-1) Determine the inverse Z-transform of

$$
F(z)=\frac{e^{1 / z}}{z-2} .
$$

Solution: Use the method of residues: $f(n)=\sum \operatorname{Res}\left[z^{n-1} F(z)\right]$. Two singularitites of $z^{n-1} F(z)$ are at $z=0$ and at $z=2$, both simple. Now, $\operatorname{Res}_{z=0}\left[z^{n-1} F(z)\right]$ is the coefficient of z^{-1} in the product of series

$$
z^{-1} \frac{1}{1-(2 / z)}=z^{-1}+2 z^{-2}+2^{2} z^{-3}+\ldots+2^{n-1} z^{-n}+2^{n} z^{-(n+1)}+2^{n+1} z^{-(n+2)}+\ldots
$$

and

$$
z^{n-1} e^{1 / z}=z^{n-1}+z^{n-2}+\frac{1}{2!} z^{n-3}+\ldots+\frac{1}{(n-1)!}+\frac{1}{n!} z^{-1}+\frac{1}{(n+1)!}+z^{-2}+\ldots
$$

which is

$$
\sum_{k=0}^{k=n-1} \frac{2^{k}}{(n-k-1)!}
$$

On the other hand, $\operatorname{Res}_{z=2}\left[z^{n-1} F(z)\right]=2^{n-1} e^{0.5}$ so that

$$
f(n)=\sqrt{e} 2^{n-1}+\sum_{k=0}^{k=n-1} \frac{2^{k}}{(n-k-1)!}
$$

Q-2) Consider the sequence $1,1,2,4,7,11,16, \ldots$ that begins with $n=0$ and satisfies $f(n+1)-f(n)=n$. Find $f(n)$.

Solution: $z F(z)-z+F(z)=z /(z-1)^{2}$ gives $F(z)=z /(z-1)^{3}+z /(z-1)$. Now, $Z^{-1}\left\{z /(z-1)^{3}\right\}=\operatorname{Res}_{z=1}\left[z^{n} /(z-1)^{3}\right]=n(n-1) / 2$. Also, $Z^{-1}\{z /(z-1)\}=1$. Hence,

$$
f(n)=\frac{n(n-1)}{2}+1 .
$$

Q-3) Find a conformal map which maps the interior of the set $\{x+i y \in \mathbb{C} \mid y \geq 0,0 \leq x \leq \pi / 2\}$ onto the interior of the unit disk such that the point $\pi / 4+i$ is mapped to the origin.

Solution: $w_{1}=\sin z$ maps the region onto the first quadrant. $w_{2}=w_{1}^{2}$ maps the first quadrant onto the upper half plane. $w=\left(w_{2}-z_{0}\right) /\left(w_{2}-\overline{z_{0}}\right)$ maps the first quadrant onto the unit circle such that z_{0} is mapped to the origin. We don't need the $\exp (i \alpha)$ factor. Now follow what happens to the given point to find precisely what z_{0} should be. It turns out that $z_{0}=\frac{1}{2}(1+i \sinh 2)$.

Q-4) Using a complex logarithmic mapping,
a) find a bounded harmonic function $H(x, y)$, or $H(r, \theta)$, in the wedge $0<\arg (z)<\pi / 6$, $|z|>0$ such that $H(r, 0)=0$ and $H(r, \pi / 6)=1$ for $r>0$.
b) Find a harmonic conjugate $G(x, y)$ of $H(x, y)$ and describe the families of level curves $H(x, y)=c_{1}, G(x, y)=c_{2}$ for real constants c_{1}, c_{2}.

Solution: a) $H(u, v)=\operatorname{Re}\left\{-i \frac{6}{\pi} \log z\right\}$ in w-plane so that $H(x, y)=\frac{6}{\pi} \arctan (y / x)$ with the range of arctan function taken between 0 and π.
b) $G(u, v)=\operatorname{Im}\left\{-i \frac{6}{\pi} \log z\right\}$ in w-plane so that $G(x, y)=\frac{6}{\pi} \ln \left(\sqrt{x^{2}+y^{2}}\right)$. Hence, $H(x, y)=$ c_{1} give radial lines and $G(x, y)=c_{2}$ give circular arcs in the wedge.

