Math 206 Complex Calculus - Midterm Exam I - Solutions

Q-1) Solve the following equations and write your answers in rectangular, $z=x+i y$, form:
a) $z^{4}=-8+i 8 \sqrt{3}$.
b) $\cosh z=\frac{3}{4} i$.

Answers: (a) $-8+i 8 \sqrt{3}=2^{4} \exp \left(i\left[\frac{2 \pi}{3}+2 n \pi\right]\right), n \in \mathbb{Z}$.
Then $z=2 \exp \left(i\left[\frac{2 \pi}{3}+2 n \pi\right] / 4\right)$ for $n=0,1,2,3$.
This gives $z= \pm(\sqrt{3}+i)$ and $\pm(1-\sqrt{3} i)$.
(b) $\cosh z=\cosh x \cos y+i \sinh x \sin y$.

We start with $\cosh x \cos y=0$. Since $\cosh x \geq 1$, we must have $\cos y=0$ or $y=(2 n+1) \pi / 2$, for $n \in \mathbb{Z}$. Note that for this value of $y, \sin y=(-1)^{n}$.

Now solving separately for $\sinh x=3 / 4$ and $\sinh x=-3 / 4$, we get $z=(-1)^{n} \ln 2+i((2 n+1) \pi / 2), n \in \mathbb{Z}$.

Q-2) Find the value of the integral $\int_{|z|=1} \frac{(\cos z)\left(e^{z}\right)}{z^{4}} d z$.
Answer: Let $f(z)=(\cos z)\left(e^{z}\right)$. The general form of Cauchy integral formula gives the value of this integral as $\frac{2 \pi i}{3!} f^{(3)}(0)=-\frac{2}{3} \pi i$.

Q-3) Find the residues of the following functions at $z=0$:
a) $f(z)=\frac{1}{z^{2} \sinh z}$.
b) $g(z)=\frac{1}{\left(2 z+3 z^{2}+5 z^{3}\right)^{2}}$.

Answers: (a) This is example 2 on page 171. Also studied in exercises 12 and 13 on page 175.

$$
\begin{aligned}
\frac{1}{z^{2} \sinh z} & =\frac{1}{z^{2}} \frac{1}{z+z^{3} / 3!+z^{5} / 5!+\cdots} \\
& =\frac{1}{z^{3}} \frac{1}{1+z^{2} / 3!+z^{4} / 5!+\cdots} \\
& =\frac{1}{z^{3}}\left(1-\frac{1}{6} z^{2}+\frac{7}{360} z^{4}+\cdots\right)
\end{aligned}
$$

$$
=\frac{1}{z^{3}}+\frac{-1 / 6}{z}+\frac{7}{360} z+\cdots
$$

from which we see that the residue is $-1 / 6$.
(b) For this either use exercise 10 on page 198 or do a direct calculation of series and find the residue as $-3 / 4$.

If $f(z)=1 /[q(z)]^{2}$ where z_{0} is a simple root of q, then the residue of f at z_{0} is given by $-q^{\prime \prime}\left(z_{0}\right) /\left[q^{\prime}\left(z_{0}\right)\right]^{3}$. In this problem $q(z)=2 z+3 z^{2}+5 z^{3}$. The residue at 0 is then found to be as $-3 / 4$.

Or we can do a series calculation as follows, and pick the coefficient of $1 / z$:

$$
\begin{aligned}
\frac{1}{\left(2 z+3 z^{2}+5 z^{3}\right)^{2}} & =\frac{1}{z^{2}} \frac{1}{\left(2+3 z+5 z^{2}\right)^{2}} \\
& =\frac{1}{z^{2}} \frac{1}{4+12 z+29 z^{2}+30 z^{3}+25 z^{4}} \\
& =\frac{1}{z^{2}} \frac{1}{4\left(1+3 z+(29 / 4) z^{2}+(15 / 4) z^{3}+(25 / 4) z^{4}\right)} \\
& =\frac{1 / 4}{z^{2}}\left(1-3 z+\frac{7}{4} z^{2}+\cdots\right) \\
& =\frac{1 / 4}{z^{2}}+\frac{-\mathbf{3} / \mathbf{4}}{z}+\frac{7}{16}+\cdots .
\end{aligned}
$$

Q-4) Find an upper bound for the modulus of the integral $\int_{C} \frac{\log z}{(z-2)^{2}} d z$, when $\log z$ is the branch $|z|>0,-\pi / 2<\arg z<3 \pi / 2$ and C is the positively oriented circle of radius 1 about $z_{0}=2$.

Answer: Using $|\log z|<\ln r+|\theta|<\ln 3+\pi / 6$ one has

$$
\left|\int_{C} \frac{\log z}{(z-2)^{2}} d z\right| \leq\left(\ln 3+\frac{\pi}{6}\right) 2 \pi=\frac{\pi^{2}}{3}+2 \pi \ln 3
$$

where we used $|z-2|=1$ on C, and the length of C is 2π.
One can also evaluate this integral using the general form of Cauchy Integral Formula since the integrand is analytic on and inside the circle C. Thus the integral is $2 \pi i f^{\prime}(2)=i \pi$, where $f(z)=\log z$. The magnitude is exactly π.

Please send comments to sertoz@bilkent.edu.tr

