Q-1) Solve the following equations and write your answers in rectangular, z = x + iy, form:

a) $z^4 = -8 + i8\sqrt{3}$. b) $\cosh z = \frac{3}{4}i$.

Answers: (a) $-8 + i8\sqrt{3} = 2^4 exp(i[\frac{2\pi}{3} + 2n\pi]), n \in \mathbb{Z}.$

Then $z = 2exp(i[\frac{2\pi}{3} + 2n\pi]/4)$ for n = 0, 1, 2, 3.

This gives $z = \pm(\sqrt{3}+i)$ and $\pm(1-\sqrt{3}i)$.

(b) $\cosh z = \cosh x \cos y + i \sinh x \sin y$.

We start with $\cosh x \cos y = 0$. Since $\cosh x \ge 1$, we must have $\cos y = 0$ or $y = (2n+1)\pi/2$, for $n \in \mathbb{Z}$. Note that for this value of y, $\sin y = (-1)^n$.

Now solving separately for $\sinh x = 3/4$ and $\sinh x = -3/4$, we get $z = (-1)^n \ln 2 + i((2n+1)\pi/2), n \in \mathbb{Z}$.

Q-2) Find the value of the integral $\int_{|z|=1} \frac{(\cos z) (e^z)}{z^4} dz$.

Answer: Let $f(z) = (\cos z) (e^z)$. The general form of Cauchy integral formula gives the value of this integral as $\frac{2\pi i}{3!} f^{(3)}(0) = -\frac{2}{3}\pi i$.

Q-3) Find the residues of the following functions at z = 0:

a)
$$f(z) = \frac{1}{z^2 \sinh z}$$
.
b) $g(z) = \frac{1}{(2z + 3z^2 + 5z^3)^2}$

Answers: (a) This is example 2 on page 171. Also studied in exercises 12 and 13 on page 175.

$$\frac{1}{z^2 \sinh z} = \frac{1}{z^2} \frac{1}{z + z^3/3! + z^5/5! + \cdots}$$
$$= \frac{1}{z^3} \frac{1}{1 + z^2/3! + z^4/5! + \cdots}$$
$$= \frac{1}{z^3} \left(1 - \frac{1}{6}z^2 + \frac{7}{360}z^4 + \cdots \right)$$

$$= \frac{1}{z^3} + \frac{-1/6}{z} + \frac{7}{360}z + \cdots$$

from which we see that the residue is -1/6.

(b) For this either use exercise 10 on page 198 or do a direct calculation of series and find the residue as -3/4.

If $f(z) = 1/[q(z)]^2$ where z_0 is a simple root of q, then the residue of f at z_0 is given by $-q''(z_0)/[q'(z_0)]^3$. In this problem $q(z) = 2z + 3z^2 + 5z^3$. The residue at 0 is then found to be as -3/4.

Or we can do a series calculation as follows, and pick the coefficient of 1/z:

$$\frac{1}{(2z+3z^2+5z^3)^2} = \frac{1}{z^2} \frac{1}{(2+3z+5z^2)^2}$$
$$= \frac{1}{z^2} \frac{1}{4+12z+29z^2+30z^3+25z^4}$$
$$= \frac{1}{z^2} \frac{1}{4(1+3z+(29/4)z^2+(15/4)z^3+(25/4)z^4)}$$
$$= \frac{1/4}{z^2} \left(1-3z+\frac{7}{4}z^2+\cdots\right)$$
$$= \frac{1/4}{z^2} + \frac{-3/4}{z} + \frac{7}{16} + \cdots$$

Q-4) Find an upper bound for the modulus of the integral $\int_C \frac{\log z}{(z-2)^2} dz$, when $\log z$ is the branch $|z| > 0, -\pi/2 < \arg z < 3\pi/2$ and C is the positively oriented circle of radius 1 about $z_0 = 2$.

Answer: Using $|log z| < lnr + |\theta| < ln3 + \pi/6$ one has

$$\left| \int_C \frac{\log z}{(z-2)^2} \, dz \right| \le (\ln 3 + \frac{\pi}{6}) 2\pi = \frac{\pi^2}{3} + 2\pi \ln 3 \frac{\pi^2}{3} + 2\pi$$

where we used |z - 2| = 1 on C, and the length of C is 2π .

One can also evaluate this integral using the general form of Cauchy Integral Formula since the integrand is analytic on and inside the circle C. Thus the integral is $2\pi i f'(2) = i\pi$, where $f(z) = \log z$. The magnitude is exactly π .

Please send comments to sertoz@bilkent.edu.tr