## Math 206 - Homework \#1

1. Using the fact that $\left|z_{1}-z_{2}\right|$ is the distance between two points $z_{1}$ and $z_{2}$, prove that
(a) the equation $|z-4 i|+|z+4 i|=10$ represents an ellipse whose foci are $(0, \pm 4)$.
(b) the equation $|z-1|=|z+i|$ represents the line through the origin whose slope is -1 .
2. Establish the identity

$$
1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}
$$

where $z \neq 1$ and then use it to derive Lagrange's trigonometric identity:

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin [(2 n+1) \theta / 2]}{2 \sin (\theta / 2)},(0<\theta<2 \pi)
$$

Hint : After proving the first identity, substitute $z=e^{i \theta}$ in it.
3. Use mathematical induction to verify de Moivre's formula

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

where n is a positive integer $(n=1,2, \ldots)$.
4. Show that if $z_{0}$ is any of the n roots of the equation $z^{n}=1$, where $z_{0} \neq 1$, then

$$
1+z_{0}+z_{0}^{2}+z_{0}^{3}+\cdots+z_{0}^{n-1}=0
$$

5. Find the four roots of the equation $z^{4}+4=0$ and use them to factor $z^{4}+4$ into quadratic factors with real coefficients.

Hint : Factor $z^{4}+4=\left(z^{2}+a z+b\right)\left(z^{2}+c z+d\right)$ where $a, b, c, d$ are real numbers.

