MATH 206 HW6

1) The PHASOR associated with a real-valued function $f(t)$ of time t is a complex number \mathbf{F}, independent of \mathbf{t}, such that $\operatorname{Re}[F \exp (s t)]=f(t)$, where $\mathbf{S}=\boldsymbol{\sigma}+\mathbf{i} \boldsymbol{\omega}$ is a complex number, called the complex frequency of $f(t)$.
(a) Determine the phasor representations and the corresponding complex frequencies for the functions:
(i) $f(t)=\cos \left(10 t+\frac{\pi}{6}\right)$
(ii) $f(t)=3 e^{-t} \sin (5 t)$
(iii) $f(t)=4 e^{-3 t}$
(b) Show that not all functions $f(t)$ have phasor representations.
2) Show that if f is analytic within and on a simple closed contour C and z_{0}
is not on C, then $\int_{C} \frac{f^{\prime}(z)}{z-z_{0}} d z=\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z$.
3) Show in two ways that the sequence $z_{n}=-2+i \frac{(-1)^{n}}{n^{2}} \quad(n=1,2,3,4, \mathrm{~K})$ converges to - 2 .
4) Show that when $0<|z|<4, \frac{1}{4 z-z^{2}}=\frac{1}{4 z}+\sum_{n=0}^{\infty} \frac{z^{n}}{4^{n+2}}$.
5) Let f be an entire function such that $|f(z)| \leq A|z|^{3}$ for all z, where A is a fixed positive number. Show that $f(z)=a_{1} z^{3}$, where a_{1} is a complex constant.

Hint: Use Cauchy's inequality.

Cauchy's inequality: Let z_{0} be a fixed complex number. If a function f is analytic within and on a circle $\left|z-z_{0}\right|=R$, taken in the positive sense and denoted by \mathbf{C} and if $|f(z)| \leq M_{R}$ on \mathbf{C}, then $\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}} \quad(n=1,2,3, \mathrm{~K})$
$\left(f^{(n)}(z)\right.$ means $\mathrm{n}^{\text {th }}$ derivative of $\mathrm{f}(\mathrm{z})$ with respect to z$)$

