MATH 206 HW7

1) Write the two Laurent series in powers of z that represent the function

$$
f(z)=\frac{1}{z\left(1+z^{2}\right)}
$$

in certain domains and specify those domains.
2)(a) Let $f(z)$ denote a function which is analytic in some annular domain about the origin that includes the unit circle $z=e^{i \phi}(-\pi \leq \phi \leq \pi)$. By taking that circle as the path of integration in expressions

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \quad(n=0,1,2, \ldots) \\
b_{n} & =\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} d z \quad(n=1,2, \ldots)
\end{aligned}
$$

for the coefficients a_{n} and b_{n} in a Laurent series in powers of z , show that

$$
f(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i \phi}\right) d \phi+\frac{1}{2 \pi} \sum_{n=1}^{\infty} \int_{-\pi}^{\pi} f\left(e^{i \phi}\right)\left[\left(\frac{z}{e^{i \phi}}\right)^{n}+\left(\frac{e^{i \phi}}{z}\right)^{n}\right] d \phi
$$

when z is any point in the annular domain.
(b) Write $u(\theta)=\operatorname{Re}\left[f\left(e^{i \theta}\right)\right]$, and show how it follows from the expansion in part (a) that

$$
u(\theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u(\phi) d \phi+\frac{1}{\pi} \sum_{n=1}^{\infty} \int_{-\pi}^{\pi} u(\phi) \cos [n(\theta-\phi)] d \phi
$$

3) If C denotes the circle $|z|=1$, taken counterclockwise, then show that

$$
\int_{C} \exp \left(z+\frac{1}{z}\right) d z=2 \pi i \sum_{n=0}^{\infty} \frac{1}{n!(n+1)!}
$$

4) The Euler numbers are the numbers $E_{n}(n=0,1,2, \ldots)$ in the Maclaurin series representation

$$
\frac{1}{\cosh (z)}=\sum_{n=0}^{\infty} \frac{E_{n}}{n!} z^{n} \quad(|z|<\pi / 2)
$$

Point out why this representation is valid in the indicated disk and why $E_{2 n+1}=0(n=0,1,2, \ldots)$. Then show that

$$
E_{0}=1, \quad E_{2}=-1, \quad E_{4}=5, \quad \text { and } \quad E_{6}=-61 .
$$

5) Prove that if f is analytic at z_{0} and $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(m)}\left(z_{0}\right)=0$, then the function g defined by the equations

$$
g(z)= \begin{cases}\frac{f(z)}{\left(z-z_{0}\right)^{m+1}} & \text { when } z \neq z_{0} \\ \frac{f^{(m+1)}\left(z_{0}\right)}{(m+1)!} & \text { when } z=z_{0}\end{cases}
$$

is analytic at z_{0}.

