## MATH 206 HW9

1)Solve the initial value problem $y^{\prime \prime}(t)+y(t)=f(t), \quad y(0)=y^{\prime}(0)=0$, where $f(t)$ is the impulse train $f(t)=\sum_{k=0}^{\infty} \delta(t-k \pi)$.Verify that your solution satisfies the differential equation.
2)Solve the initial value problem $y^{\prime \prime}(t)-3 y^{\prime}(t)+2 y(t)=f(t), \quad y(0)=y^{\prime}(0)=0$, where $f(t)$ is the function shown in Figure 1.


Figure 1: graph of $f(\mathrm{t})$
3)Solve the following system of linear differential equations using Laplace Transform techniques:

$$
\begin{aligned}
x^{\prime \prime}-3 x^{\prime}+y^{\prime}+2 x-y & =0 \\
x^{\prime}+y^{\prime}-2 x+y & =0 \\
x(0) & =0 \\
x^{\prime}(0) & =0 \\
y(0) & =-1
\end{aligned}
$$

4)Find the inverse Laplace Transform of $\frac{2 s-5}{\left(s^{2}+9\right)^{2}}$.
5)Solve the differential equation $y^{\prime \prime}+2 y^{\prime}+y=\sin (t), \quad y(0)=3, y^{\prime}(0)=1$.

