STUDENT NO:

Math 206	Complex	Calculus –	Midterm	Exam I
----------	---------	------------	---------	--------

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet.

No correct answer without a satisfying reasoning is accepted. Show your work in detail.

Write your name on the top of every page.

Q-1) (i) Find all the fourth roots of $-8 + i8\sqrt{3}$ and (ii) indicate the principal root.

Solution: (i) The number $z := -8 + i8\sqrt{3}$ has the polar representation $z = 16 \exp[i(\frac{2\pi}{3} + 2n\pi)]$ for integer *n*. The principal argument of *z* is $\frac{2\pi}{3}$. Let $c_k, \ k = 0, 1, 2, 3$ be the four fourth roots of *z*. Then, $c_k = 2 \exp[i(\frac{\pi}{6} + \frac{k\pi}{2})], \ k = 0, 1, 2, 3$. In rectangular representation

$$c_0 = \sqrt{3} + i$$
, $c_1 = -1 + \sqrt{3}$, $c_2 = -\sqrt{3} - i$, $c_3 = 1 - i\sqrt{3}$.

(ii) The principal root is the one obtained from the principal value of z, i.e., from $z = 16 \exp(i\frac{2\pi}{3})$. Thus, the principal root is $c_0 = \sqrt{3} + i$.

STUDENT NO:

Q-2) (i) Calculate $(\sqrt{3} + i)^{1+i}$ and (ii) indicate its principal value.

Solution: (i) We have

$$\begin{split} (\sqrt{3}+i)^{1+i} &= \exp\{(1+i)[\log(\sqrt{3}+i)]\} = \exp\{(1+i)[\ln 2 + i(\frac{\pi}{6}+2k\pi)]\}\\ &= \exp[\ln 2 - \frac{\pi}{6} - 2k\pi + i(\ln 2 + \frac{\pi}{6}+2k\pi)]\\ &= \exp(\ln 2)\exp(-\frac{\pi}{6} - 2k\pi)\exp[i(\ln 2 + \frac{\pi}{6}+2k\pi)]\\ &= 2\exp(-\frac{\pi}{6} - 2k\pi)\exp[i(\ln 2 + \frac{\pi}{6})]\\ &= 2\exp(-\frac{\pi}{6} - 2k\pi)\left[\cos(\ln 2 + \frac{\pi}{6}) + i\sin(\ln 2 + \frac{\pi}{6})\right], \end{split}$$

for arbitrary integer k.

(ii) The principal value is obtained when $Log(\sqrt{3}+i)$ is used in the first line above. This corresponds to k = 0 in the last line, i.e., the principal value of $(\sqrt{3}+i)^{1+i}$ is $2\exp(-\frac{\pi}{6})\left[cos(ln 2 + \frac{\pi}{6}) + i sin(ln 2 + \frac{\pi}{6})\right]$.

STUDENT NO:

Q-3) Let $u(\lambda; x, y) = (\lambda x + \cos x) \cosh y$, where λ is a real constant. For which value of λ can we find a function v(x, y) such that $f(z) = u(\lambda; x, y) + iv(x, y)$ will be an entire function of z = x + iy? For that value of λ find v(x, y).

Solution: First Cauchy-Riemann equation requires that

$$u_x = (\lambda - \sin x)\cosh y = v_y,$$

which gives $v = (\lambda - \sin x) \sinh y + \phi(x)$ for some differentiable function ϕ of x. By the second Cauchy-Riemann equation

$$v_x = -\cos x \sinh y + \phi'(x) = -u_y = -(x\lambda + \cos x)\sinh y$$

which gives $\phi'(x) = -x\lambda \sinh y$. Since $\phi'(x)$ must be independent of y, this last equality gives $\lambda = 0$. Therefore, $\phi(x) = c$ for some real constant c and

$$v(x,y) = -\sin x \sinh y + c$$

is a harmonic conjugate of u(0; x, y) for every real c.

Q-4) Evaluate

$$\int_C \bar{z}^2 \, dz,$$

where C is the parabolic arc $y = x^2, 0 \le x \le 1$, directed from the origin to the point 1 + i.

Solution: We have $f(z) := \overline{z}^2 = (x - iy)^2 = x^2 - y^2 - i2xy$ and on the contour $C : z = z(x) = x + ix^2$, this function becomes $f[z(x)] = x^2 - x^4 - i2x^3$. Also noting that z'(x) = 1 + i2x, we can write

$$\int_C \bar{z}^2 dz = \int_0^1 (x^2 - x^4 - i2x^3)(1 + i2x) dx$$

=
$$\int_0^1 (x^2 + 3x^4 - i2x^5) dx$$

=
$$(\frac{x^3}{3} + 3\frac{x^5}{5})|_0^1 - i(\frac{x^6}{3})|_0^1$$

=
$$\frac{14}{15} - i\frac{1}{3}.$$

NAME: