Math 206 Complex Calculus - Midterm Exam II

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet.
No correct answer without a satisfying reasoning is accepted. Show your work in detail.
Write your name on the top of every page.

Q-1) Find the residues of $f(z)=\left(\sinh \frac{1}{z}\right)^{-1}$ at all of its poles.

Solution: First recall that $\sinh t=0$ if and only if $t=i \pi n$ for all integers n. Moreover these are simple zeros of $\sinh t$. Therefore $f(z)$ has simple poles at $z_{n}=1 /(i \pi n)$ for $n= \pm 1, \pm 2, \ldots$. Note that $z=0$ is not an isolated singularity since $\lim _{n \rightarrow \pm \infty} z_{n}=0$.

Since $f(z)$ is of the form $\frac{p(z)}{q(z)}$ with $q(z)$ having simple zeroes at each z_{n} and $p\left(z_{n}\right) \neq 0$, the residue R_{n} at z_{n} is equal to $\frac{p\left(z_{n}\right)}{q^{\prime}\left(z_{n}\right)}$. Here $q^{\prime}(z)=-\frac{1}{z^{2}} \cosh (1 / z)$.
Recalling that $\cosh (i \pi n)=(-1)^{n}$ we find that $R_{n}=\frac{(-1)^{n}}{n^{2} \pi^{2}}$.

Q-2) Calculate the integral $\int_{C} \frac{d z}{z^{2} \sin z}$, where C is the positively oriented circle $|z|=3 \pi / 2$.

Solution: Inside this contour we have three singularities at $z=0,-\pi, \pi$.
Residues at $\pm \pi$ are easy to calculate:

$$
\frac{1}{z^{2} \sin z}=\frac{1 / z^{2}}{\sin z}
$$

so

$$
\begin{aligned}
\operatorname{Res}_{z= \pm \pi} & =\frac{1 /(\pm \pi)^{2}}{\cos \pm \pi} \\
& =-\frac{1}{\pi^{2}}
\end{aligned}
$$

Residue at $z=0$ requires a little more calculation:

$$
\begin{aligned}
\frac{1}{z^{2} \sin z} & =\frac{1}{z^{2}\left(z-z^{3} / 6+z^{5} / 120-\cdots\right)} \\
& =\frac{1}{z^{3}\left(1-z^{2} / 6+z^{4} / 120-\cdots\right)} \\
& =\frac{1}{z^{3}\left(1-\left[z^{2} / 6-z^{4} / 120+\cdots\right]\right)} \\
& =\frac{1}{z^{3}}\left(1+\left[z^{2} / 6-z^{4} / 120+\cdots\right]+\left[z^{2} / 6-z^{4} / 120+\cdots\right]^{2}+\cdots\right) \\
& =\frac{1}{z^{3}}\left(1+z^{2} / 6+\text { higher degree terms in } z\right) \\
& =\frac{1}{z^{3}}+\frac{1 / 6}{z}+\cdots
\end{aligned}
$$

So the residue at $z=0$ is $1 / 6$.
Putting these together we find

$$
\int_{|z|=3 \pi / 2} \frac{d z}{z^{2} \sin z}=2 \pi i\left(-\frac{2}{\pi^{2}}+\frac{1}{6}\right) .
$$

Q-3) Evaluate the integral $\int_{0}^{\infty} \frac{x^{2}}{x^{4}+x^{2}+1} d x$.

Solution: Let $f(z)=\frac{z^{2}}{z^{4}+z^{2}+1}$.
The roots of the denominator that lie in the upper half plane are $z_{1}=e^{i \pi / 3}$ and $z_{2}=e^{i 2 \pi / 3}$.
$\operatorname{Res}_{z=z_{1}} f(z)=\frac{3-i \sqrt{3}}{12}$ and $\operatorname{Res}_{z=z_{2}} f(z)=-\frac{3+i \sqrt{3}}{12}$.
Hence the sum of the residues is $-\frac{i}{2 \sqrt{3}}$.
Consider the path $\gamma_{R}=[-R, R]+C_{R}$ where $R>1$ and C_{R} is $z=R e^{i \theta}$ with $0 \leq \theta \leq \pi$.
It can be shown that $\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{2}}{z^{4}+z^{2}+1} d z=0$.
From $\int_{\gamma_{R}} f(z) d z=2 \pi i\left(-\frac{i}{2 \sqrt{3}}\right)$, it follows that $\int_{0}^{\infty} \frac{x^{2}}{x^{4}+x^{2}+1} d x=\frac{\pi}{2 \sqrt{3}}$.

Q-4) Evaluate the integral $\int_{0}^{\infty} \frac{\sin (2 x)}{x\left(x^{2}+5\right)} d x$.
Solution: Consider the function $f(z)=\frac{e^{i 2 z}}{z\left(z^{2}+5\right)}=\frac{e^{i 2 z}}{z^{3}+5 z}$.
Integrate this function over the path $\gamma_{R}=[-R,-\rho]+C_{\rho}+[\rho, R]+C_{R}$ where $0<\rho<\sqrt{5}<R, C_{R}$ is $z=R e^{i \theta}$ with $0 \leq \theta \leq \pi$ and C_{ρ} is $z=\rho e^{i(\pi-\theta)}$ with $0 \leq \theta \leq \pi$.

There is a simple pole of $f(z)$ inside the contour at $z_{0}=i \sqrt{5}$, and the residue there is $\frac{e^{i 2 z_{0}}}{3 z_{0}^{2}+5}=-\frac{e^{-2 \sqrt{5}}}{10}$.
There is a simple pole at $z=0$ and the residue there is $B_{0}=\left.\frac{e^{i 2 z}}{3 z^{2}+5}\right|_{z=0}=\frac{1}{5}$.
We know that $\int_{C_{\rho}} f(z) d z=-\pi i B_{0}=-\frac{\pi i}{5}$.
We also have $\int_{-\rho}^{-R} f(z) d z+\int_{\rho}^{R} f(z) d z=2 i \int_{\rho}^{r} \frac{\sin (2 x)}{x\left(x^{2}+5\right)} d x$.
The residue theorem now gives
$\int_{\gamma_{R}} f(z) d z=\int_{C_{R}} f(z) d z+\int_{C_{\rho}} f(z) d z+2 i \int_{\rho}^{R} \frac{x \sin (2 x)}{x^{2}+5} d x=2 \pi i\left(-\frac{e^{-2 \sqrt{5}}}{10}\right)$.
It can be shown by using Jordan's lemma that the integral over C_{R} vanishes as R tends to infinity.

This finally gives, after taking limits as $\rho \rightarrow 0$ and $R \rightarrow \infty$, $\int_{0}^{\infty} \frac{\sin (2 x)}{x\left(x^{2}+5\right)} d x=\frac{\pi}{10}\left(1-e^{-2 \sqrt{5}}\right) \approx 0.3105706584$.

