NAME:	•••
-------	-----

STUDENT NO:.....

Math 206 Complex Calculus – Midterm Exam II

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet.

No correct answer without a satisfying reasoning is accepted. Show your work in detail. Write your name on the top of every page.

Q-1) Find the residues of
$$f(z) = \left(\sinh \frac{1}{z}\right)^{-1}$$
 at all of its poles.

Solution: First recall that $\sinh t = 0$ if and only if $t = i\pi n$ for all integers n. Moreover these are simple zeros of $\sinh t$. Therefore f(z) has simple poles at $z_n = 1/(i\pi n)$ for $n = \pm 1, \pm 2, \ldots$ Note that z = 0 is not an isolated singularity since $\lim_{n \to \pm \infty} z_n = 0$.

Since f(z) is of the form $\frac{p(z)}{q(z)}$ with q(z) having simple zeroes at each z_n and $p(z_n) \neq 0$, the residue R_n at z_n is equal to $\frac{p(z_n)}{q'(z_n)}$. Here $q'(z) = -\frac{1}{z^2} \cosh(1/z)$. Recalling that $\cosh(i\pi n) = (-1)^n$ we find that $R_n = \frac{(-1)^n}{n^2 \pi^2}$.

NAME:

STUDENT NO:

Q-2) Calculate the integral $\int_C \frac{dz}{z^2 \sin z}$, where *C* is the positively oriented circle $|z| = 3\pi/2$.

Solution: Inside this contour we have three singularities at $z = 0, -\pi, \pi$. Residues at $\pm \pi$ are easy to calculate:

$$\frac{1}{z^2 \sin z} = \frac{1/z^2}{\sin z},$$

so

$$\operatorname{Res}_{z=\pm\pi} = \frac{1/(\pm\pi)^2}{\cos \pm\pi}$$

$$= -\frac{1}{\pi^2}.$$

Residue at z = 0 requires a little more calculation:

$$\frac{1}{z^2 \sin z} = \frac{1}{z^2 (z - z^3/6 + z^5/120 - \cdots)}$$

$$= \frac{1}{z^3 (1 - z^2/6 + z^4/120 - \cdots)}$$

$$= \frac{1}{z^3 (1 - [z^2/6 - z^4/120 + \cdots])}$$

$$= \frac{1}{z^3} \left(1 + [z^2/6 - z^4/120 + \cdots] + [z^2/6 - z^4/120 + \cdots]^2 + \cdots \right)$$

$$= \frac{1}{z^3} (1 + z^2/6 + \text{higher degree terms in } z)$$

$$= \frac{1}{z^3} + \frac{1/6}{z} + \cdots$$

So the residue at z = 0 is 1/6.

Putting these together we find

$$\int_{|z|=3\pi/2} \frac{dz}{z^2 \sin z} = 2\pi i \left(-\frac{2}{\pi^2} + \frac{1}{6} \right).$$

NAME:

Q-3) Evaluate the integral
$$\int_0^\infty \frac{x^2}{x^4 + x^2 + 1} dx$$
.

Solution: Let $f(z) = \frac{z^2}{z^4 + z^2 + 1}$.

The roots of the denominator that lie in the upper half plane are $z_1 = e^{i\pi/3}$ and $z_2 = e^{i2\pi/3}$.

$$Res_{z=z_1}f(z) = \frac{3-i\sqrt{3}}{12}$$
 and $Res_{z=z_2}f(z) = -\frac{3+i\sqrt{3}}{12}$.

Hence the sum of the residues is $-\frac{i}{2\sqrt{3}}$.

Consider the path $\gamma_R = [-R, R] + C_R$ where R > 1 and C_R is $z = Re^{i\theta}$ with $0 \le \theta \le \pi$.

It can be shown that $\lim_{R \to \infty} \int_{C_R} \frac{z^2}{z^4 + z^2 + 1} dz = 0.$

From
$$\int_{\gamma_R} f(z) dz = 2\pi i \left(-\frac{i}{2\sqrt{3}}\right)$$
, it follows that $\int_0^\infty \frac{x^2}{x^4 + x^2 + 1} dx = \frac{\pi}{2\sqrt{3}}.$

NAME:

STUDENT NO:

Q-4) Evaluate the integral $\int_0^\infty \frac{\sin(2x)}{x(x^2+5)} dx.$

Solution: Consider the function $f(z) = \frac{e^{i2z}}{z(z^2+5)} = \frac{e^{i2z}}{z^3+5z}$.

Integrate this function over the path $\gamma_R = [-R, -\rho] + C_\rho + [\rho, R] + C_R$ where $0 < \rho < \sqrt{5} < R$, C_R is $z = Re^{i\theta}$ with $0 \le \theta \le \pi$ and C_ρ is $z = \rho e^{i(\pi-\theta)}$ with $0 \le \theta \le \pi$.

There is a simple pole of f(z) inside the contour at $z_0 = i\sqrt{5}$, and the residue there is $\frac{e^{i2z_0}}{3z_0^2 + 5} = -\frac{e^{-2\sqrt{5}}}{10}$.

There is a simple pole at z = 0 and the residue there is $B_0 = \frac{e^{i2z}}{3z^2 + 5}\Big|_{z=0} = \frac{1}{5}$.

We know that $\int_{C_{\rho}} f(z) dz = -\pi i B_0 = -\frac{\pi i}{5}.$

We also have $\int_{-\rho}^{-R} f(z) dz + \int_{\rho}^{R} f(z) dz = 2i \int_{\rho}^{r} \frac{\sin(2x)}{x(x^2+5)} dx.$

The residue theorem now gives

$$\int_{\gamma_R} f(z) \, dz = \int_{C_R} f(z) \, dz + \int_{C_\rho} f(z) \, dz + 2i \int_{\rho}^R \frac{x \sin(2x)}{x^2 + 5} \, dx = 2\pi i \left(-\frac{e^{-2\sqrt{5}}}{10} \right).$$

It can be shown by using Jordan's lemma that the integral over C_R vanishes as R tends to infinity.

This finally gives, after taking limits as $\rho \to 0$ and $R \to \infty$,

$$\int_0^\infty \frac{\sin(2x)}{x(x^2+5)} \, dx = \frac{\pi}{10} (1 - e^{-2\sqrt{5}}) \approx 0.3105706584.$$