Date: April 21, 2007, Saturday
Time: 14:00-16:00
Özgüler \& Sertöz
\qquad
\qquad

Math 206 Complex Calculus - Midterm Exam II - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet. Write your name on the top of every page. A correct answer without proper reasoning may not get any credit.

Q-1) Evaluate the integral $\int_{0}^{\infty} \frac{x \ln x}{x^{3}+1} d x$.

Hint: You may use the fact that $\int_{0}^{\infty} \frac{x}{x^{3}+1} d x=\frac{2 \pi \sqrt{3}}{9}$.
Answer: Let $\alpha=e^{i \pi / 3}$, choose constants $0<\rho<1<R$, and consider the path $\gamma=L_{1}+C_{R}+L_{2}+C_{\rho}$ in \mathbb{C} where;
$z \in L_{1}$ means $z=x$ for $\rho \leq x \leq R$,
$z \in C_{R}$ means $z=R e^{i \theta}$ for $0 \leq \theta \leq 2 \pi / 3$,
$z \in-L_{2}$ means $z=\alpha^{2} x$ for $\rho \leq x \leq R$, and
$z \in-C_{\rho}$ means $z=\rho e^{i \theta}$ for $0 \leq \theta \leq 2 \pi / 3$.
Let $f(z)=\frac{z \log z}{z^{3}+1}$ where we use the branch $-\pi / 2 \leq \theta<3 \pi / 2$ for the \log function so that it agrees with the real \ln function of the original integral. The function $f(z)$ has a simple pole at $z=\alpha$ inside the contour γ.

We easily calculate

$$
2 \pi i \operatorname{Res}_{z=\alpha} f(z)=(2 \pi i) \frac{\alpha \log \alpha}{3 \alpha^{2}}=(2 \pi i)\left(\frac{\pi \sqrt{3}}{18}+i \frac{\pi}{18}\right)=-\frac{\pi^{2}}{9}+i \frac{\pi^{2} \sqrt{3}}{9} .
$$

By the usual analysis we show that

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} f(z) d z=0, \quad \lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0
$$

By using the above parametrization we find

$$
\int_{L_{1}} f(z) d z=\int_{\rho}^{R} \frac{x \ln x}{x^{3}+1} d x
$$

and

$$
\int_{L_{2}} f(z) d z=-\left(\alpha^{4} \log \alpha^{2}\right) \int_{\rho}^{R} \frac{x}{x^{3}+1} d x-\alpha^{4} \int_{\rho}^{R} \frac{x \ln x}{x^{3}+1} d x
$$

We finally have

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =2 \pi i \operatorname{Res}_{z=\alpha} f(z) \\
\int_{L_{1}} f+\int_{C_{R}} f+\int_{L_{2}} f+\int_{C_{\rho}} f & =-\frac{\pi^{2}}{9}+i \frac{\pi^{2} \sqrt{3}}{9}
\end{aligned}
$$

Taking limits as $\rho \rightarrow 0$ and $R \rightarrow \infty$, and using the hint we get

$$
\begin{aligned}
\left(1-\alpha^{4}\right) \int_{0}^{\infty} \frac{x \ln x}{x^{3}+1} d x-\left(\alpha^{4} \log \alpha^{2}\right) \int_{0}^{\infty} \frac{x}{x^{3}+1} d x & =-\frac{\pi^{2}}{9}+i \frac{\pi^{2} \sqrt{3}}{9} \\
\left(\frac{3}{2}-i \frac{\sqrt{3}}{2}\right) \int_{0}^{\infty} \frac{x \ln x}{x^{3}+1} d x-\frac{2 \pi^{2}}{9}+i \frac{2 \pi^{2} \sqrt{3}}{27} & =-\frac{\pi^{2}}{9}+i \frac{\pi^{2} \sqrt{3}}{9}
\end{aligned}
$$

From this, equating the real or imaginary part of the right hand side with that of the left hand side we find

$$
\int_{0}^{\infty} \frac{x \ln x}{x^{3}+1} d x=\frac{2 \pi^{2}}{27}
$$

Q-2) Evaluate the integral $\int_{0}^{\infty} \frac{\sin x}{x\left(x^{2}+1\right)} d x$.
Answer: This solution closely follows the calculation of $\int_{0}^{\infty} \frac{\sin x}{x} d x$ on page 269-270 of the textbook, seventh edition. Here we mark only the deviations from the book.

Our function is $\frac{e^{i z}}{z\left(z^{2}+1\right)}$.
It has a simple pole at $z=i$ inside the given path with residue $-\frac{1}{2 e}$.
Hence the right hand side of the first equality in the solution is now $2 \pi i\left(-\frac{1}{2 e}\right)=-\frac{\pi}{e} i$.
The rest of the calculations are similar. Notice that the integral on C_{ρ} also converges to $-\pi i$.

Putting these together we get

$$
2 i \int_{0}^{\infty} \frac{\sin x}{x\left(x^{2}+1\right)} d x-\pi i=-\frac{\pi}{e} i
$$

which gives us

$$
\int_{0}^{\infty} \frac{\sin x}{x\left(x^{2}+1\right)} d x=\frac{\pi}{2}\left(1-\frac{1}{e}\right)=0.9929326520 \ldots
$$

Q-3) Using the Laplace transforms method solve the initial value problem

$$
\begin{aligned}
& x^{\prime \prime}+2 x^{\prime}+x(t)=H(t)-H(t-1) \\
& x(0)=1, x^{\prime}(0)=-1
\end{aligned}
$$

where $H(t)$ is the unit step function.

Answer:

$$
X(s)=\frac{s^{2}+s+1}{s(s+1)^{2}}-\frac{e^{-s}}{s(s+1)^{2}}=\frac{1}{s}-\frac{1}{(s+1)^{2}}-e^{-s}\left[\frac{1}{s}-\frac{1}{(s+1)^{2}}-\frac{1}{s+1}\right]
$$

so that $x(t)=1-t e^{-t}-\left[1-e^{-(t-1)}-(t-1) e^{-(t-1)}\right] H(t-1), t \geq 0$.

Q-4) Using the Laplace transforms method determine the solution to the system of equations

$$
\begin{aligned}
& x^{\prime \prime}-y(t)=0 \\
& y^{\prime \prime}+8 y(t)+16 x(t)=0 \\
& x(0)=0, x^{\prime}(0)=0, y(0)=0, y^{\prime}(0)=-1
\end{aligned}
$$

Answer:

$$
X(s)=\frac{1}{\left(s^{2}+2^{2}\right)^{2}}
$$

so that using either the method of residues or recognizing that

$$
\frac{8}{\left(s^{2}+4\right)^{2}}=\frac{d}{d s} \frac{s}{s^{2}+4}+\frac{1}{s^{2}+4}
$$

it follows that $x(t)=-\frac{1}{16} \sin (2 t)+\frac{t}{8} \cos (2 t)$.
Since $y(t)=x^{\prime \prime}(t)$ we easily find $y(t)=-\frac{1}{4} \sin (2 t)-\frac{t}{2} \cos (2 t)$.

