Math 213 Advanced Calculus
 Midterm Exam II
 Solution Set

1) Construct a function $f:[1, \infty) \rightarrow \mathbb{R}$ which is unbounded on $[1, \infty)$ but is improperly integrable there in the sense that $\lim _{R \rightarrow \infty} \int_{1}^{R} f(x) d x$ exists and is finite.

Several such constructions are possible. One such function is given by

$$
f(x)= \begin{cases}2^{n} & \text { if } n<x \leq n+\frac{1}{2^{2 n}} \\ 0 & \text { otherwise }\end{cases}
$$

Clearly f is unbounded. Notice however that $\int_{n}^{n+1} f(x) d x=1 / 2^{n}$, so $\int_{1}^{\infty} f(x) d x=$ $\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{n}^{n+1} f(x) d x=\lim _{n \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{2^{n}}=1$.
2) Assume that $f:[3,5] \rightarrow \mathbb{R}$ is one-to-one. Assume further that f^{\prime} exists and is integrable on $[3,5]$, and that $f(3)=7, f(5)=8$. Calculate

$$
\int_{3}^{5} f(x) d x+\int_{7}^{8} f^{-1}(x) d x .
$$

Putting $x=f(t)$ we find that $\int_{7}^{8} f^{-1}(x) d x=\int_{3}^{5} f^{-1}(f(t)) f^{\prime}(t) d t=\int_{3}^{5} t f^{\prime}(t) d t$. Then $\int_{3}^{5} f(x) d x+\int_{7}^{8} f^{-1}(x) d x=\int_{3}^{5} f(x) d x+\int_{3}^{5} x f^{\prime}(x) d x=\int_{3}^{5}(x f(x))^{\prime} d x=$ $5 f(5)-3 f(3)=19$.
3) Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that for some real number $p>1$ we have; $\lim _{n \rightarrow \infty} n^{p} a_{n}=A$, with $A \in \mathbb{R}$. Show that $\sum_{n=1}^{\infty} a_{n}$ converges.

Let $\epsilon>0$ be chosen arbitrarily. Then there is an N such that for all $n \geq N$ we have

$$
A-\frac{\epsilon}{2}<n^{p} a_{n}<A+\frac{\epsilon}{2} .
$$

$$
\begin{equation*}
-\frac{\epsilon}{2} \frac{1}{n^{p}}<a_{n}-\frac{A}{n^{p}}<\frac{\epsilon}{2} \frac{1}{n^{p}} \tag{1}
\end{equation*}
$$

Let $L_{K}=\sum_{n=N}^{K} \frac{1}{n^{p}}$, and $L=\lim _{K \rightarrow \infty} L_{K}$. Now sum up all sides of equation 1 from $n=N$ to K to obtain

$$
-\frac{\epsilon}{2} L_{K}<\sum_{n=N}^{K} a_{n}-A L_{K}<\frac{\epsilon}{2} L_{K}
$$

and since $0<L_{K}<L$ we have

$$
\begin{align*}
&-\frac{\epsilon}{2} L<\sum_{n=N}^{K} a_{n}-A L_{K}<\frac{\epsilon}{2} L \\
&-\frac{\epsilon}{2}<\frac{1}{L} \sum_{n=N}^{K} a_{n}-\frac{1}{L} A L_{K}<-\frac{\epsilon}{2} \\
&\left|\frac{1}{L} \sum_{n=N}^{K} a_{n}-\frac{1}{L} A L_{K}\right|<\frac{\epsilon}{2} . \tag{2}
\end{align*}
$$

Since $\lim _{K \rightarrow \infty} \frac{A}{L} L_{K}=A$, there is an index K_{0} such that for all $K \geq K_{0}$ we have

$$
\begin{equation*}
\left|\frac{A}{L} L_{K}-A\right|<\frac{\epsilon}{2} . \tag{3}
\end{equation*}
$$

Now combining equations 2 and 3 we have for all $K \geq K_{0}$

$$
\left|\frac{1}{L} \sum_{n=N}^{K} a_{n}-A\right| \leq\left|\frac{1}{L} \sum_{n=N}^{K} a_{n}-\frac{A}{L} L_{K}\right|+\left|\frac{A}{L} L_{K}-A\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

which is equivalent to saying that $\sum_{n=N}^{\infty} a_{n}=A L$, and which in turn implies that the series $\sum_{n=1}^{\infty} a_{n}$ converges.
4) Show that $\cos (1)$ is irrational.

Assume $\cos (1)=\frac{m}{n}$ for some integers m and $n>0$. Using the series expansion of cosine we have

$$
\frac{m}{n}=1-\frac{1}{2!}+\cdots+(-1)^{k} \frac{1}{(2 k)!}+\cdots
$$

Assuming $2 k \leq n<2 k+1$, multiply both sides by $(-1)^{k+1} n$! to obtain

$$
\begin{aligned}
(-1)^{k+1}(n-1)!m= & {\left[(-1)^{k+1} n!\left(1-\frac{1}{2!}+\cdots+(-1)^{k} \frac{1}{(2 k)!}\right)\right] } \\
& +\frac{n!}{(2 k+2)!}-\frac{n!}{(2 k+4)!}+\cdots
\end{aligned}
$$

Letting the expression inside the square brackets on the right hand side to be A and setting $B=(-1)^{k+1}(n-1)!m-A$, we see that B is an integer which satisfies

$$
0<\frac{n!}{(2 k+2)!}-\frac{n!}{(2 k+4)!}<B<\frac{n!}{(2 k+2)!}<1
$$

which is a contradiction. Hence $\cos (1)$ is irrational.
5) Consider the set $A=\cup_{n=1}^{\infty}\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \geq 1+1 / n\right\}$. Describe the interior, the closure and the boundary of A. Is A closed, open or neither?
$A=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}>1\right\}$. Therefore A is open and the interior of A is equal to A. The closure of A is $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \geq 1\right\}$, and the boundary of A is the unit circle $x^{2}+y^{2}=1$.

