\qquad
\qquad

Math 213 Advanced Calculus - Final Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Consider the infinite series

$$
\sum_{n=0}^{\infty} \frac{(n!)^{3}}{(3 n)!} x^{n}
$$

i) Find the radius of convergence.
ii) Decide if the series converges at the end points. [10+10 points]

Solution:

$$
\begin{aligned}
a_{n} & =\frac{(n!)^{3}}{(3 n)!} x^{n} . \\
a_{n+1} & =\frac{(n!)^{3}(n+1)^{3}}{(3 n)!(3 n+1)(3 n+2)(3 n+3)} x^{n+1} . \\
\left|\frac{a_{n+1}}{a_{n}}\right| & =\left(\frac{n+1}{3 n+1}\right)\left(\frac{n+1}{3 n+2}\right)\left(\frac{n+1}{3 n+3}\right)|x| \\
& =\left(\frac{1+1 / n}{3+1 / n}\right)\left(\frac{1+1 / n}{3+2 / n}\right)\left(\frac{1+1 / n}{3+3 / n}\right)|x| .
\end{aligned}
$$

$$
\text { Then } \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{|x|}{3^{3}} \text {. }
$$

Therefore the series converges absolutely for $|x|<27$.
Since $\left(\frac{n+1}{3 n+1}\right)>\frac{1}{3},\left(\frac{n+1}{3 n+2}\right)>\frac{1}{3}$ and $\left(\frac{n+1}{3 n+3}\right)=\frac{1}{3}$, at the end points when $|x|=27$ we will have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|>1, \text { and hence }\left|a_{n+1}\right|>\left|a_{n}\right|>\cdots>\left|a_{1}\right|>0 .
$$

Then we see that the general term does not converge to zero as n goes to ∞. Hence the series diverges at the endpoints.

Q-2) Let $f_{n}(x)=\left(1+\frac{x}{n}\right)^{n}$, where $x \in[0,1]$ and $n=1,2, \ldots$
i) Show that $f_{n}(x)$ is increasing as n increases.

You may find Bernoulli's inequality useful: $(1+\delta)^{\alpha} \leq 1+\alpha \delta$, for $0<\alpha \leq 1$ and $\delta>-1$.
ii) For each n, find the maximum of $h_{n}(x)=e^{x}-\left(1+\frac{x}{n}\right)^{n}$, where $x \in[0,1]$.
iii) Prove or disprove that the sequence $\left\{f_{n}(x)\right\}$ converges to e^{x} uniformly on $[0,1]$ as $n \rightarrow \infty$. [7+6+7 points]

Solution:

Using Bernoulli's inequality, we can write

$$
\left(1+\frac{x}{n}\right)^{\frac{n}{n+1}} \leq 1+\frac{n}{n+1} \frac{x}{n}=1+\frac{x}{n+1}
$$

Taking the $n+1$-st power of all sides, we get

$$
\left(1+\frac{x}{n}\right)^{n} \leq\left(1+\frac{x}{n+1}\right)^{n+1}
$$

which shows that $f_{n}(x)$ increases as n increases.
To find the maximum of $h_{n}(x)$ we take its derivative.

$$
h_{n}^{\prime}(x)=e^{x}-\left(1+\frac{x}{n}\right)^{n-1}>e^{x}-\left(1+\frac{x}{n}\right)^{n}>0
$$

Thus $h_{n}(x)$ is strictly increasing and takes its maximum at the right end point $x=1$.
Using the previous results, we observe that

$$
\left|e^{x}-\left(1+\frac{x}{n}\right)^{n}\right|<e-\left(1+\frac{1}{n}\right)^{n}=e-f_{n}(1)
$$

We know that $f_{n}(1)$ converges to e as n goes to infinity. Therefore, for any $\epsilon>0$, we can find an index N such that for all $n \geq N$, we have $\left|e-f_{n}(1)\right|<\epsilon$. Combining this with the above inequalities, we conclude that the same N works for all $x \in[0,1]$, and hence the convergence is uniform.

Q-3) Let $f(x)=1-x^{2}$ for $x \in[-\pi, \pi]$, and extend f to \mathbb{R} periodically.
i) Find all the Fourier coefficients $a_{k}(f)$ and $b_{k}(f)$ of f.
ii) Does the Fourier series of f converge? To what function does it converge? Why?
iii) Find the value of the sum $1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\cdots+\frac{(-1)^{n+1}}{n^{2}}+\cdots$.
[7+6+7 points]

Solution:

By direct computation we find that $a_{0}(f)=2-\frac{2}{3} \pi^{2}$, and $a_{n}(f)=(-1)^{n+1} \frac{4}{n^{2}}$. Since f is even, all $b_{n}(f)=0$.

The Fourier series of f converges uniformly by the Weierstrass M-test, so it converges to f, by Fourier's theorem.

Evaluating the identity $f(x)=(S f)(x)$ at $x=0$ we get

$$
\frac{\pi^{2}}{12}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \approx 0.8224670336
$$

Q-4) Let $f(x)=|x|$ for $x \in[-\pi, \pi]$, and extend f to \mathbb{R} periodically.
i) Find all the Fourier coefficients $a_{k}(f)$ and $b_{k}(f)$ of f.
ii) Does the Fourier series of f converge? To what function does it converge? Why?
iii) Find the value of the sum $1+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\cdots+\frac{1}{(2 n-1)^{4}}+\cdots$.
[7+6+7 points]

Solution:

Clearly f is of bounded variation, so its Fourier series converges to f. This is calculated in the book as an example and we have

$$
|x|=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}
$$

Since f is continuous, Parseval's identity

$$
\frac{a_{0}(f)^{2}}{2}+\sum_{n=1}^{\infty}\left[a_{n}(f)^{2}+b_{n}(f)^{2}\right]=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) d x
$$

gives, after simplifications,

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{4}}=\frac{\pi^{4}}{96} \approx 1.014678032
$$

Q-5) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Prove that for any $\epsilon>0$ there exists a (classical) polynomial $P(x)$ such that $|f(x)-P(x)|<\epsilon$, for all $x \in[a, b]$.
[20 points]

Solution:

By Fejer's theorem, every continuous function can be uniformly approximated by a Cesaro sum which is a trigonometric polynomial. Being a trigonometric polynomial, a Cesaro sum is an analytic function of x and can be uniformly approximated by Taylor polynomials. Putting these together, we can uniformly approximate f.

