NAME:....

STUDENT NO:.....

Math 213 Advanced Calculus – Final Exam – Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Consider the infinite series

$$\sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!} x^n$$

i) Find the radius of convergence.

ii) Decide if the series converges at the end points.

[10+10 points]

Solution:

$$a_n = \frac{(n!)^3}{(3n)!} x^n.$$

$$a_{n+1} = \frac{(n!)^3 (n+1)^3}{(3n)! (3n+1)(3n+2)(3n+3)} x^{n+1}.$$

$$\frac{a_{n+1}}{a_n} = \left(\frac{n+1}{3n+1}\right) \left(\frac{n+1}{3n+2}\right) \left(\frac{n+1}{3n+3}\right) |x|$$

$$= \left(\frac{1+1/n}{3+1/n}\right) \left(\frac{1+1/n}{3+2/n}\right) \left(\frac{1+1/n}{3+3/n}\right) |x|$$
Then $\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \frac{|x|}{3^3}.$

Therefore the series converges absolutely for |x| < 27.

Since $\left(\frac{n+1}{3n+1}\right) > \frac{1}{3}$, $\left(\frac{n+1}{3n+2}\right) > \frac{1}{3}$ and $\left(\frac{n+1}{3n+3}\right) = \frac{1}{3}$, at the end points when |x| = 27 we will have $\left|\frac{a_{n+1}}{a_n}\right| > 1$, and hence $|a_{n+1}| > |a_n| > \cdots > |a_1| > 0$.

Then we see that the general term does not converge to zero as n goes to ∞ . Hence the series diverges at the endpoints.

NAME:

Q-2) Let $f_n(x) = \left(1 + \frac{x}{n}\right)^n$, where $x \in [0, 1]$ and n = 1, 2, ...

i) Show that $f_n(x)$ is increasing as n increases.

You may find Bernoulli's inequality useful: $(1 + \delta)^{\alpha} \leq 1 + \alpha \delta$, for $0 < \alpha \leq 1$ and $\delta > -1$.

ii) For each n, find the maximum of $h_n(x) = e^x - \left(1 + \frac{x}{n}\right)^n$, where $x \in [0, 1]$. iii) Prove or disprove that the sequence $\{f_n(x)\}$ converges to e^x uniformly on [0, 1] as $n \to \infty$.

[7+6+7 points]

Solution:

Using Bernoulli's inequality, we can write

$$\left(1+\frac{x}{n}\right)^{\frac{n}{n+1}} \le 1+\frac{n}{n+1}\frac{x}{n} = 1+\frac{x}{n+1}.$$

Taking the n + 1-st power of all sides, we get

$$\left(1+\frac{x}{n}\right)^n \le \left(1+\frac{x}{n+1}\right)^{n+1},$$

which shows that $f_n(x)$ increases as n increases.

To find the maximum of $h_n(x)$ we take its derivative.

$$h'_n(x) = e^x - \left(1 + \frac{x}{n}\right)^{n-1} > e^x - \left(1 + \frac{x}{n}\right)^n > 0.$$

Thus $h_n(x)$ is strictly increasing and takes its maximum at the right end point x = 1.

Using the previous results, we observe that

$$\left| e^x - \left(1 + \frac{x}{n}\right)^n \right| < e - \left(1 + \frac{1}{n}\right)^n = e - f_n(1).$$

We know that $f_n(1)$ converges to e as n goes to infinity. Therefore, for any $\epsilon > 0$, we can find an index N such that for all $n \ge N$, we have $|e - f_n(1)| < \epsilon$. Combining this with the above inequalities, we conclude that the same N works for all $x \in [0, 1]$, and hence the convergence is uniform.

STUDENT NO:

- **Q-3)** Let $f(x) = 1 x^2$ for $x \in [-\pi, \pi]$, and extend f to \mathbb{R} periodically.
 - i) Find all the Fourier coefficients $a_k(f)$ and $b_k(f)$ of f.
 - ii) Does the Fourier series of f converge? To what function does it converge? Why?
 - iii) Find the value of the sum $1 \frac{1}{4} + \frac{1}{9} \frac{1}{16} + \dots + \frac{(-1)^{n+1}}{n^2} + \dots$. [7+6+7 points]

Solution:

By direct computation we find that $a_0(f) = 2 - \frac{2}{3}\pi^2$, and $a_n(f) = (-1)^{n+1} \frac{4}{n^2}$. Since f is even, all $b_n(f) = 0$.

The Fourier series of f converges uniformly by the Weierstrass M-test, so it converges to f, by Fourier's theorem.

Evaluating the identity f(x) = (Sf)(x) at x = 0 we get

$$\frac{\pi^2}{12} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \approx 0.8224670336.$$

STUDENT NO:

Q-4) Let f(x) = |x| for $x \in [-\pi, \pi]$, and extend f to \mathbb{R} periodically.

- i) Find all the Fourier coefficients $a_k(f)$ and $b_k(f)$ of f.
- ii) Does the Fourier series of f converge? To what function does it converge? Why? iii) Find the value of the sum $1 + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \dots + \frac{1}{(2n-1)^4} + \dots$ [7+6+7 points]

Solution:

Clearly f is of bounded variation, so its Fourier series converges to f. This is calculated in the book as an example and we have

$$|x| = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}.$$

Since f is continuous, Parseval's identity

$$\frac{a_0(f)^2}{2} + \sum_{n=1}^{\infty} [a_n(f)^2 + b_n(f)^2] = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, dx$$

gives, after simplifications,

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} = \frac{\pi^4}{96} \approx 1.014678032.$$

STUDENT NO:

Q-5) Let $f : [a,b] \to \mathbb{R}$ be a continuous function. Prove that for any $\epsilon > 0$ there exists a (classical) polynomial P(x) such that $|f(x) - P(x)| < \epsilon$, for all $x \in [a,b]$. [20 points]

Solution:

By Fejer's theorem, every continuous function can be uniformly approximated by a Cesaro sum which is a trigonometric polynomial. Being a trigonometric polynomial, a Cesaro sum is an analytic function of x and can be uniformly approximated by Taylor polynomials. Putting these together, we can uniformly approximate f.