\qquad
\qquad

Math 213 Advanced Calculus I - Midterm Exam II - Solutions

Q-1) Define $T_{n}(x)=x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}$, where n is a positive integer and x is a real number.
Show that

$$
1+T_{5}(x) \leq e^{x} \leq \frac{241}{240}+T_{5}(x), \quad \text { for all } x \in[0,1]
$$

When do we have, if ever, equalities on either side?
Solution: Taylor's theorem states that

$$
e^{x}=1+T_{5}(x)+\frac{e^{c}}{6!} x^{6}, \text { for some } c \text { between } x \text { and } 0
$$

In our case c must be somewhere in $[0,1]$. Taking $e<3$, we find that for $x \in[0,1]$,

$$
0 \leq \frac{e^{c}}{6!} x^{6}<\frac{3}{6!}=\frac{1}{240}
$$

Adding $1+T_{5}(x)$ to all sides of this inequality, we obtain the claimed result.
The first inequality becomes an equality when $x=0$. Since e^{x} is strictly increasing, for $x>0$, the first inequality is always strict. The second inequality is always strict on $[0,1]$ because we replaced e by 3 in the error estimate.

Q-2) Show that $\cos 1$ is irrational.
Solution: We know that

$$
\cos 1=1-\frac{1}{2!}+\cdots+\frac{(-1)^{k}}{(2 k)!}+\cdots
$$

Assume to the contrary that $\cos 1$ is rational. Let $\cos 1=\frac{p}{q}$ for some integers p and $q .(\cos 1=$ $.5403023059 \ldots$, but we will not use this information.) Let n be an odd integer such that $2 n>|q|$. We are assuming that

$$
\frac{p}{q}=1-\frac{1}{2!}+\cdots+\frac{(-1)^{k}}{(2 k)!}+\cdots
$$

Multiply both sides by $(2 n)$! to obtain

$$
\frac{p(2 n)!}{q}=(2 n)!\left(1-\frac{1}{2!}+\cdots+\frac{(-1)^{n}}{(2 n)!}\right)+(2 n)!\left(\frac{(-1)^{n+1}}{(2 n+2)!}+\frac{(-1)^{n+2}}{(2 n+4)!}+\cdots\right)
$$

or equivalently (recalling that n is odd)

$$
\frac{p(2 n)!}{q}-(2 n)!\left(1-\frac{1}{2!}+\cdots+\frac{(-1)^{n}}{(2 n)!}\right)=(2 n)!\left(\frac{1}{(2 n+2)!}-\frac{1}{(2 n+4)!}+\cdots\right)
$$

Observe that the left hand side is an integer. Call it N. Simplifying the right hand side we obtain

$$
N=\frac{1}{(2 n+1)(2 n+2)}-\frac{1}{(2 n+1)(2 n+2)(2 n+3)(2 n+4)}+\cdots
$$

Since the right hand side is an alternating sum and the general term decreases steadily down to zero, we must have

$$
0<N<\frac{1}{(2 n+1)(2 n+2)}<1
$$

But there is no integer in the interval $(0,1)$. This contradiction shows that $\cos 1$ is irrational.

Q-3) Define $f_{n}(x)=x / n$ and $f(x)=0$, where n is a positive integer and x is a real number. Show that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ pointwise on any interval $I \subset \mathbb{R}$.
Is this convergence uniform when
(i) $I=[0,1]$?
(ii) $I=\mathbb{R}$?

Solution: For any $x \in \mathbb{R}, x / n$ goes to 0 as n goes to ∞. So we have the pointwise convergence on every interval.

Let $I=[0,1]$. For any $\epsilon>0$, choose an integer $N>1 / \epsilon$. Then for any $n \geq N$ and for any $x \in[0,1]$, we have

$$
\left|f_{n}(x)-f(x)\right|=\frac{x}{n} \leq \frac{1}{n} \leq \frac{1}{N}<\epsilon
$$

So the convergence is uniform on $[0,1]$.
Let $I=\mathbb{R}$. Take $\epsilon=1$. For every integer $N>0$ take $n=N$ and $x_{0} \geq N \epsilon=N$. Then we have

$$
\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right|=\frac{x_{0}}{n}=\frac{x_{0}}{N} \geq \epsilon=1
$$

So the convergence is not uniform on \mathbb{R}.

Q-4) Construct a sequence $\left\{f_{n}(x)\right\}$ of continuous functions on $[0,1]$ which converges pointwise but not uniformly to a continuous function $f(x)$ on $[0,1]$.

Solution: Let $f(x)=0$ for all x. The idea then, is to let the graph of $f_{n}(x)$ to be zero everywhere except on the interval $[1 /(2 n), 1 / n]$ where it is a triangle of fixed height. The following description achieves this.

For any two real numbers $a<b$, define a function $\phi_{[a, b]}(x)$ as follows

$$
\phi_{[a, b]}(x)= \begin{cases}\frac{2}{b-a} \min \{x-a, b-x\} & \text { if } x \in[a, b] \\ 0 & \text { otherwise }\end{cases}
$$

The graph of $\phi_{[a, b]}(x)$ has a triangle of fixed height 1 on the interval $[a, b]$ and is zero elsewhere.
Now define the sequence as $f_{n}(x)=\phi_{[1 /(2 n), 1 / n]}(x)$ for $x \in[0,1]$.
For any $x \in(0,1]$, let N_{x} be an integer with $N_{x}>1 / x$, and let $N_{0}=1$. Then for any $x \in[0,1]$ and for any $n \geq N_{x}$, we have $f_{n}(x)=0$, which gives the poinwise convergence.

But the convergence is not uniform; Take $0<\epsilon \leq 1$. For any N, take $n \geq N$ and take $x=3 /(4 n)$, the midpoint of the interval $[1 /(2 n), 1 / n]$. Then $\left|f_{n}(x)-f(x)\right|=1 \geq \epsilon$. So the convergence is not uniform.

Q-5) Is it possible to construct a sequence $\left\{f_{n}(x)\right\}$ of differentiable functions on $[-1,1]$, which converges uniformly on that interval to the absolute value function $f(x)=|x|$ (which we know is not differentiable at $x=0$)? If yes, construct such a sequence. If not, explain why.

Solution: The example given in class by the back-seat-gang works perfectly well for this problem. Here is their solution.

Let $f_{n}(x)=\sqrt{x^{2}+1 / n}$. This clearly converges to the absolute value function as n goes to ∞.
To show that the convergence is uniform, for any $\epsilon>0$ take $N>1 / \epsilon^{2}$. Now for any $n \geq N$ and any $x \in[-1,1]$, we have

$$
\left|f_{n}(x)-f(x)\right|=\sqrt{x^{2}+1 / n}-\sqrt{x^{2}}=\frac{1 / n}{\sqrt{x^{2}+1 / n}+\sqrt{x^{2}}} \leq \frac{1}{\sqrt{n}} \leq \frac{1}{\sqrt{N}}<\epsilon
$$

which establishes the uniform convergence.
Here is the graph of $|x|$ together with $f_{n}(x)$ for $n=10,20,200$.

