\qquad

Math 214 Advanced Calculus - Final Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let M be a compact C^{∞} manifold in \mathbb{R}^{n} of dimension m with the property that for every $x \in M$ there is a coordinate chart $\left(U, \phi_{U}\right)$ such that $x \in U$ and $\phi_{U}(U)$ is the unit ball in \mathbb{R}^{n} centered at the origin.
Define what it means for a function $f: M \rightarrow \mathbb{R}$ to be C^{∞}.
Show that there exists a non-constant C^{∞} function $f: M \rightarrow \mathbb{R}$ such that $|f(x)|<1$ for all $x \in M$.

Solution:

The function $f: M \rightarrow \mathbb{R}$ is called C^{∞} if $f \circ \phi_{i}^{-1}$ is C^{∞} for each i.
The above open sets U constitute an open cover of M and since M is compact, a finite subcover exists, say U_{1}, \ldots, U_{m}. Let ϕ_{i} denote $\phi_{U_{i}}$, and let S_{i} denote the unit disk $\phi_{i}\left(U_{i}\right)$. By Urysohn's lemma we know that there exists a C^{∞} function $h_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $0 \leq h(x) \leq 1$ for all $x \in \mathbb{R}^{m}, h(x)=1$ for all $x \in B_{1 / 2}(0) \subset S_{i}$ and with support in S_{i}.

For $x \in M$ define $f_{\alpha}(x)=\left(\alpha h_{1} \circ \phi_{1}(x)+h_{2} \circ \phi_{2}(x)+\cdots+h_{m} \circ \phi_{m}(x)\right) / m$, where $0<\alpha \leq 1$. At most one of the f_{α} can be a constant function. All the other f_{α} satisfy the requirements.

Q-2) Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a function.
Define, in $\epsilon-\delta$ notation, continuity of f on \mathbb{R}^{n}.
Define what it means for f to be differentiable on \mathbb{R}^{n}.
Prove or disprove that f is continuous on \mathbb{R}^{n} if and only if $f^{-1}(U)$ is open in \mathbb{R}^{n} for every open U in \mathbb{R}^{m}.

Solution:

f is continuous at $x_{0} \in \mathbb{R}^{n}$ if for every $\epsilon>0$ there is a $\delta>0$ such that $x \in B_{\delta}\left(x_{0}\right)$ implies $f(x) \in B_{\epsilon}\left(f\left(x_{0}\right)\right)$.
f is continuous on \mathbb{R}^{n} if it is continuous at every x_{0} in \mathbb{R}^{n}.
f is differentiable at $x_{0} \in \mathbb{R}^{n}$ if there exists a linear map $T_{x_{0}}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ such that

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)-T_{x_{0}}\left(x-x_{0}\right)}{\left|x-x_{0}\right|}=0 .
$$

f is differentiable on \mathbb{R}^{n} if it is differentiable at every x_{0} in \mathbb{R}^{n}.
The statement is true:
First assume that f is continuous. Let U be open in \mathbb{R}^{m} and let $x_{0} \in f^{-1}(U)$. Since U is open, there exists $\epsilon>0$ such that $B_{\epsilon}\left(f\left(x_{0}\right)\right) \subset U$. By continuity of f at x_{0}, there exists a $\delta>0$ such that for all $x \in B_{\delta}\left(x_{0}\right)$, we have $f(x) \in B_{\epsilon}\left(f\left(x_{0}\right)\right) \subset U$. In other words $B_{\delta}\left(x_{0}\right) \subset f^{-1}(U)$ proving that $f^{-1}(U)$ is open.

Now assume that $f^{-1}(U)$ is open in \mathbb{R}^{n} for every open U in \mathbb{R}^{m}. Let x_{0} be any fixed point in \mathbb{R}^{n}. Choose any $\epsilon>0$. By assumption $f^{-1}\left(B_{\epsilon}\left(f\left(x_{0}\right)\right)\right.$ is open. In particular there exists a $\delta>0$ such that $B_{\delta}\left(x_{0}\right)$ lies in $f^{-1}\left(B_{\epsilon}\left(f\left(x_{0}\right)\right)\right.$, which is the $\epsilon-\delta$ description of the continuity of f at x_{0}. Since x_{0} was arbitrary, f is continuous everywhere on \mathbb{R}^{n}.

Q-3) State the implicit function theorem and show how it applies to show that there exists continuously differentiable functions $u(x, y)$ and $v(x, y)$ near the point $(x, y)=(1,2)$ satisfying the conditions

$$
\begin{aligned}
& x u^{2}+y v^{2}+x y=43 \\
& x v^{2}+y u^{2}-x y=32
\end{aligned}
$$

and $u(1,2)=3, v(1,2)=4$.

Solution:

The implicit function theorem states that if $F=\left(F_{1}, \ldots, F_{n}\right)$ is a C^{1}-function from an open set U in \mathbb{R}^{n+k} to \mathbb{R}^{n} such that for some point $(a, b) \in \mathbb{R}^{n+k}$ with $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{k}$ we have $F(a, b)=0$ and

$$
\frac{\partial\left(F_{1}, \ldots, F_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}(a, b) \neq 0
$$

then the variables x_{1}, \ldots, x_{n} can be solved in a continuously differentiable way in terms of the remaining variables around the point $b \in \mathbb{R}^{k}$. In other words, there exists a unique C^{1}-function g defined from some open neighborhood of $b \in \mathbb{R}^{k}$ to $\mathbb{R}^{n}, g=\left(g_{1}, \ldots, g_{n}\right)$, such that $g(b)=a$ and $x_{i}=g_{i}\left(x_{n+1}, \ldots, x_{n+k}\right), i=1, \ldots, n$.

In the given problem we take $n=k=2, a=(3,4), b=(1,2)$ and $\left(x_{1}, \ldots, x_{4}\right)=(u, v, x, y)$ and $F=\left(F_{1}, F_{2}\right)=\left(x u^{2}+y v^{2}+x y-43, x v^{2}+y u^{2}-x y-32\right)$. Then

$$
\frac{\partial\left(F_{1}, F_{2}\right)}{\partial(u, v)}(3,4,1,2)=\left|\begin{array}{ll}
2 x u & 2 y v \\
2 y u & 2 x v
\end{array}\right|_{(3,4,1,2)}=\left(4 u v\left(x^{2}-y^{2}\right)\right)_{(3,4,1,2)}=-144 \neq 0
$$

hence u and v can be solved as required in terms of x and y by the implicit function theorem.

Q-4) Suppose V is open in \mathbb{R}^{n} and $f: V \longrightarrow \mathbb{R}$ is a continuous function. Assume that

$$
\int_{E} f=0
$$

for every non-empty Jordan region $E \subset V$. Prove or disprove that $f=0$ on V.

Solution:

The statement is true.
If $f=0$ on V, then there is nothing to prove. Assume there is $a \in V$ such that $f(a) \neq 0$. Since V is open and since f is continuous, there exists an open ball $B \subset V$ containing a such that $f(x) \neq 0$ for all $x \in B$. Let E be a closed ball in B containing a. Note that E, being a ball in \mathbb{R}^{n}, is a Jordan region. Also note that E is compact and that f is nonzero at every point on E.

By the Mean Value Theorem for Multiple Integrals, there exists a number c such that

$$
\inf _{x \in E} \leq c \leq \sup _{x \in E}
$$

with the property that

$$
c \operatorname{Vol}(E)=\int_{E} f
$$

By our assumption, the integral is zero, so $c \operatorname{Vol}(E)=0$, forcing $c=0$. But f being continuous on the compact ball E, there exists a point $x_{0} \in E$ such that $f\left(x_{0}\right)=c=0$ contradicting the way we chose E. Thus there is no point $a \in V$ with $f(a) \neq 0$.

Q-5) Let ω be a differential r-form.
(i) Prove or disprove: $\omega^{2}=0$ if r is odd.
(ii) Prove or disprove: $\omega^{2}=0$ if r is even.

Solution: Let $\omega=\sum \omega_{i}$ where $\omega_{i}=f_{i} d x_{i_{1}} \cdots d x_{i_{r}}$ and f_{i} is a function. Then $\omega^{2}=\sum \omega_{i} \omega_{j}=$ $\sum_{i<j}\left(\omega_{i} \omega_{j}+\omega_{j} \omega_{i}\right)$.

Observe that $d x_{i_{1}} \cdots d x_{i_{r}} d x_{j_{1}} \cdots d x_{j_{r}}=(-1)^{r} d x_{j_{1}} \cdots d x_{j_{r}} d x_{i_{1}} \cdots d x_{i_{r}}$. This gives immediately that the first statement is true.

Clearly when $\omega=d x_{i_{1}} \cdots d x_{i_{r}}$, then $\omega^{2}=0$ regardless of the parity of r. But if $\omega=d x_{1} d x_{2}+d x_{3} d x_{4}$, then $\omega^{2}=2 d x_{1} d x_{2} d x_{3} d x_{4} \neq 0$. Hence the second statement is false.

