NAME:....

STUDENT NO:.....

Math 214 Advanced Calculus – Midterm Exam I – Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let *I* be a non-empty closed and bounded interval in \mathbb{R} . Suppose that for every $x \in I$ there exists a non-negative C^{∞} function f_x such that $f_x(x) > 0$ and $f'_x(t) = 0$ for all $t \notin I$. Show that there exists a non-negative C^{∞} function $f : \mathbb{R} \to \mathbb{R}$ such that f(t) > 0 for all $t \in I$ and f'(t) = 0 for all $t \notin I$.

Solution:

For each $x \in I$, since f is continuous and positive at x, there exists an open neighborhood U_x of x such that f(t) > 0 for all $t \in U_x$. Since $I \subset \bigcup_{x \in I} U_x$ and I is compact, there exists a finite number of points $x_1, \ldots, x_m \in I$ such that $I \subset \bigcup_{i=1}^m U_{x_i}$. Define $f = f_{x_1} + \cdots + f_{x_m}$. Check that this satisfies the requirements.

NAME:

STUDENT NO:

Q-2) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a continuous function and E be a non-empty subset of \mathbb{R}^n .

(a): Mark each of the following statements as TRUE or FALSE.
Grading: Each correct answer is 2 points, each wrong answer is -3 points. No answer is 0 points.
(i) If E is open, then f(E) is also open. FALSE
f(x) = x², E = (-1, 1), f(E) = [0, 1).
(ii) If E is closed, then f(E) is also closed. FALSE
f(x) = 1/x, E = [1, ∞), f(E) = (0, 1].
(iii) If E is compact, then f(E) is also compact. TRUE
(iv) If E is bounded, then f(E) is also bounded. FALSE
f(x) = 1/x, E = (0, 1), f(E) = (1, ∞).
(v) If E is connected, then f(E) is also connected. TRUE
(b): Prove or disprove: If V is open in ℝ^m, then f⁻¹(V) is open in ℝⁿ.

Solution:

Let $x \in f^{-1}(V)$. Since V is open, there exists $\epsilon > 0$ such that $B_{\epsilon}(f(x)) \subset V$. By continuity of f at x, there exists a $\delta > 0$ such that for all $y \in \mathbb{R}^n$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \epsilon$. In other words $f(B_{\delta}(x)) \subset B_{\epsilon}(f(x)) \subset V$, or equivalently $B_{\delta}(x) \subset f^{-1}(V)$ proving that $f^{-1}(V)$ is open.

STUDENT NO:

Q-3) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a continuous function and E be a non-empty subset of \mathbb{R}^n . Prove that if E is compact, then f is uniformly continuous on E.

Solution:

Let $\epsilon > 0$ be chosen. By continuity, for each $x \in E$, there exists a $\delta_x > 0$ such that $f(B_{\delta_x}(x)) \subset B_{\epsilon/2}(f(x))$. Since $E \subset \bigcup_{x \in E} B_{\delta_x}(x)$ and since E is compact, there exist a finite set of points $x_1, \ldots, x_k \in E$ such that $E \subset U_1 \cup \cdots \cup U_k$, where $U_i = B_{\delta_{x_i}}(x_i)$. Choose a $\delta > 0$ such that $0 < 2\delta < \min\{\delta_{x_1}, \ldots, \delta_{x_k}\}$.

Now for any $x \in E$, $x \in U_j$ for some j. Take any y with $|x-y| < \delta$, then $|y-x_j| \le |y-x|+|x-x_j| < 2\delta < \delta_{x_j}$. Hence $x, y \in U_j$ and $|f(x) - f(y)| \le |f(x) - f(x_j)| + |f(x_j) - f(y)| < \epsilon/2 + \epsilon/2 = \epsilon$. This proves that f is uniformly continuous on E.

STUDENT NO:

NAME:

Q-4) Observe that

$$\int_0^{\pi/2} \lim_{k \to \infty} \sqrt{\frac{2k+7}{5k-x}} \sin x \, dx = \int_0^{\pi/2} \sqrt{\frac{2}{5}} \, \sin x \, dx = \sqrt{\frac{2}{5}}.$$

We want to evaluate

$$\lim_{k \to \infty} \int_0^{\pi/2} \sqrt{\frac{2k+7}{5k-x}} \sin x \, dx.$$

(a): Under which conditions can we take the limit to the inside of the integral sign, in general?

(b): Are those conditions satisfied for this case?

Solution:

If I is compact, $f_k(x)$ pointwise increases (or pointwise decreases) to a function f on I as k goes to infinity, where each f_k and f are continuous, then

$$\lim_{k \to \infty} \int_I f_k(x) \, dx = \int_I f(x) \, dx,$$

which is Dini's theorem. We can easily check that the derivative of the integrant in the above integral with respect to k is $-1/2 (2x + 35) \frac{1}{\sqrt{\frac{2k+7}{5k-x}}} (5k-x)^{-2}$ at each point. Hence the functions decrease

pointwise as k increases, and we can use Dini's theorem here.

NAME:

STUDENT NO:

Q-5) For any function $f : \mathbb{R} \to \mathbb{R}$, define the oscillation $\omega_f(t)$ of f at t. Calculate $\omega_f(t)$ for the function f that is defined as follows:

$$f(x) = \begin{cases} \sin\frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Solution:

$$\omega_f(t) = \lim_{h \to 0+} \sup_{x, y \in (t-h, t+h)} (f(x) - f(y)).$$

We know that $\omega_f(t) = 0$ if f is continuous at t. Hence we need to calculate only $\omega_f(0)$.

For any h > 0, supremum and infimum of f on (-h, h) are 1 and -1 respectively since f oscillates between 1 and -1 infinitely many times on any open interval around 0.

Hence $\omega_f(0) = 2$.