\qquad

Math 214 Advanced Calculus - Midterm Exam I - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let I be a non-empty closed and bounded interval in \mathbb{R}. Suppose that for every $x \in I$ there exists a non-negative C^{∞} function f_{x} such that $f_{x}(x)>0$ and $f_{x}^{\prime}(t)=0$ for all $t \notin I$. Show that there exists a non-negative C^{∞} function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(t)>0$ for all $t \in I$ and $f^{\prime}(t)=0$ for all $t \notin I$.

Solution:

For each $x \in I$, since f is continuous and positive at x, there exists an open neighborhood U_{x} of x such that $f(t)>0$ for all $t \in U_{x}$. Since $I \subset \bigcup_{x \in I} U_{x}$ and I is compact, there exists a finite number of points $x_{1}, \ldots, x_{m} \in I$ such that $I \subset \bigcup_{i=1}^{m} U_{x_{i}}$. Define $f=f_{x_{1}}+\cdots+f_{x_{m}}$. Check that this satisfies the requirements.

Q-2) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a continuous function and E be a non-empty subset of \mathbb{R}^{n}.
(a): Mark each of the following statements as TRUE or FALSE.

Grading: Each correct answer is 2 points, each wrong answer is -3 points. No answer is 0 points.
(i) If E is open, then $f(E)$ is also open. FALSE

$$
f(x)=x^{2}, E=(-1,1), f(E)=[0,1)
$$

(ii) If E is closed, then $f(E)$ is also closed. FALSE
$f(x)=1 / x, E=[1, \infty), f(E)=(0,1]$.
(iii) If E is compact, then $f(E)$ is also compact. TRUE
(iv) If E is bounded, then $f(E)$ is also bounded. FALSE
$f(x)=1 / x, E=(0,1), f(E)=(1, \infty)$.
(v) If E is connected, then $f(E)$ is also connected. TRUE
(b): Prove or disprove: If V is open in \mathbb{R}^{m}, then $f^{-1}(V)$ is open in \mathbb{R}^{n}.
(10 points)

Solution:

Let $x \in f^{-1}(V)$. Since V is open, there exists $\epsilon>0$ such that $B_{\epsilon}(f(x)) \subset V$. By continuity of f at x, there exists a $\delta>0$ such that for all $y \in \mathbb{R}^{n}$ with $|x-y|<\delta$, we have $|f(x)-f(y)|<\epsilon$. In other words $f\left(B_{\delta}(x)\right) \subset B_{\epsilon}(f(x)) \subset V$, or equivalently $B_{\delta}(x) \subset f^{-1}(V)$ proving that $f^{-1}(V)$ is open.

Q-3) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a continuous function and E be a non-empty subset of \mathbb{R}^{n}. Prove that if E is compact, then f is uniformly continuous on E.

Solution:

Let $\epsilon>0$ be chosen. By continuity, for each $x \in E$, there exists a $\delta_{x}>0$ such that $f\left(B_{\delta_{x}}(x)\right) \subset$ $B_{\epsilon / 2}(f(x))$. Since $E \subset \bigcup_{x \in E} B_{\delta_{x}}(x)$ and since E is compact, there exist a finite set of points $x_{1}, \ldots, x_{k} \in E$ such that $E \subset U_{1} \cup \cdots \cup U_{k}$, where $U_{i}=B_{\delta_{x_{i}}}\left(x_{i}\right)$. Choose a $\delta>0$ such that $0<2 \delta<\min \left\{\delta_{x_{1}}, \ldots, \delta_{x_{k}}\right\}$.

Now for any $x \in E, x \in U_{j}$ for some j. Take any y with $|x-y|<\delta$, then $\left|y-x_{j}\right| \leq|y-x|+\left|x-x_{j}\right|<$ $2 \delta<\delta_{x_{j}}$. Hence $x, y \in U_{j}$ and $|f(x)-f(y)| \leq\left|f(x)-f\left(x_{j}\right)\right|+\left|f\left(x_{j}\right)-f(y)\right|<\epsilon / 2+\epsilon / 2=\epsilon$. This proves that f is uniformly continuous on E.

Q-4) Observe that

$$
\int_{0}^{\pi / 2} \lim _{k \rightarrow \infty} \sqrt{\frac{2 k+7}{5 k-x}} \sin x d x=\int_{0}^{\pi / 2} \sqrt{\frac{2}{5}} \sin x d x=\sqrt{\frac{2}{5}}
$$

We want to evaluate

$$
\lim _{k \rightarrow \infty} \int_{0}^{\pi / 2} \sqrt{\frac{2 k+7}{5 k-x}} \sin x d x
$$

(a): Under which conditions can we take the limit to the inside of the integral sign, in general?
(b): Are those conditions satisfied for this case?

Solution:

If I is compact, $f_{k}(x)$ pointwise increases (or pointwise decreases) to a function f on I as k goes to infinity, where each f_{k} and f are continuous, then

$$
\lim _{k \rightarrow \infty} \int_{I} f_{k}(x) d x=\int_{I} f(x) d x
$$

which is Dini's theorem. We can easily check that the derivative of the integrant in the above integral with respect to k is $-1 / 2(2 x+35) \frac{1}{\sqrt{\frac{2 k+7}{5 k-x}}}(5 k-x)^{-2}$ at each point. Hence the functions decrease pointwise as k increases, and we can use Dini's theorem here.

Q-5) For any function $f: \mathbb{R} \rightarrow \mathbb{R}$, define the oscillation $\omega_{f}(t)$ of f at t. Calculate $\omega_{f}(t)$ for the function f that is defined as follows:

$$
f(x)= \begin{cases}\sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Solution:

$$
\omega_{f}(t)=\lim _{h \rightarrow 0+} \sup _{x, y \in(t-h, t+h)}(f(x)-f(y)) .
$$

We know that $\omega_{f}(t)=0$ if f is continuous at t. Hence we need to calculate only $\omega_{f}(0)$.
For any $h>0$, supremum and infimum of f on $(-h, h)$ are 1 and -1 respectively since f oscillates between 1 and -1 infinitely many times on any open interval around 0 .

Hence $\omega_{f}(0)=2$.

