Date: April 14, 2010, Wednesday
Time: 08:40-10:30
Ali Sinan Sertöz
\qquad
\qquad

Math 214 Advanced Calculus - Midterm Exam II - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Selçuk Erdem

Q-1) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function.
(a): Define what it means for f to be differentiable at $p \in \mathbb{R}^{n}$.
(b): Mark each of the following statements as TRUE or FALSE.

Grading: Each correct answer is 2 points, each wrong answer is -3 points. No answer is 0 points.
(i) If f is differentiable at p, then f is continuous at p.
(ii) If f is differentiable at p, then all first order partial derivatives of f exist at p.
(iii) If all first order partial derivatives of f exist at p, then f is differentiable at p.
(iv) If all second order partial derivatives of f exist at p, then f is differentiable at p.
(v) If f is differentiable at p, then all first order partial derivatives of f exist and are continuous at p.
(vi) If all directional derivatives of f exist at p, then f is continuous at p.

Solution:

(a): f is differentiable at p if there is a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\lim _{h \rightarrow 0} \frac{f(p+h)-f(p)-T(h)}{|h|}=0,
$$

where $h \in \mathbb{R}^{n}$.
(b) T-T-F-T-F-F

Q-2) (a): State the implicit function theorem for a function $f: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ at a point $(a, b) \in \mathbb{R}^{n+m}$, where $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$.
(b): Show that the system of equations

$$
\begin{aligned}
u^{2}+v^{2}+x y z & =33 \\
\frac{u}{x}+\frac{v}{y}+\frac{4}{z^{2}} & =7
\end{aligned}
$$

can be solved for u and v in terms of x, y and z around the point $(x, y, z)=(2,1,2)$ such that $u(2,1,2)=2$ and $v(2,1,2)=5$.

Solution:

(a): Let $f=\left(f_{1}, \ldots, f_{n}\right)$ and let the coordinates of \mathbb{R}^{n+m} be given by $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$. Assume that $f(a, b)=0$. If $\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{i}}(a, b)\right)_{1 \leq i, j \leq n} \neq 0$, then around $b \in \mathbb{R}^{m}$ there exists a unique differentiable function g such that $g(b)=a$ and $f(g(t), t)=0$ for all t in some neighbourhood of b in \mathbb{R}^{m}.
(b): Let $f: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ be defined by

$$
f(u, v, x, y, z)=\left(f_{1}, f_{2}\right)=\left(u^{2}+v^{2}+x y z-33, \frac{u}{x}+\frac{v}{y}+\frac{4}{z^{2}}-7\right)
$$

Then

$$
\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{i}}(2,5,2,1,2)\right)=\operatorname{det}\left(\begin{array}{cc}
4 & 10 \\
1 / 2 & 1
\end{array}\right)=-1 \neq 0
$$

So u and v can be solved in terms of x, y and z around $(2,1,2)$.

Q-3) (a): State the inverse function theorem around the origin for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
(b): Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined as

$$
f(x, y)=\left(1+x+3 y+x^{3}+y^{4}, \cos x+2 \sin y+\tan \left(x^{2}+y^{3}\right)\right)
$$

Show that f is invertible around $(0,0)$ and find $D\left(f^{-1}\right)(1,1)$, where D denotes the total derivative.

Solution:

(a): If $\operatorname{det} D f(0) \neq 0$, then f is invertible on some neighbourhood of the origin. Moreover, $\left[D f^{-1}(f(0))\right]=[D f(0)]^{-1}$.
(b):

$$
D f(0,0)=\left(\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right)
$$

This matrix is invertible, so f is locally invertible and since $f(0,0)=(1,1)$, we have

$$
D\left(f^{-1}\right)(1,1)=\left(\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & -3 / 2 \\
0 & 1 / 2
\end{array}\right)
$$

Q-4) Prove or disprove that the following function is differentiable at the origin.

$$
f(x, y)= \begin{cases}\frac{x^{3}-x y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{cases}
$$

Solution:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=1 . \\
& \frac{\partial f}{\partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=0 .
\end{aligned}
$$

If f is differentiable at the origin, then its total derivative there must be $(1,0)$.
Now we check the definition of differentiability of f at the origin.

$$
\frac{f(x, y)-f(0,0)-(1,0) \cdot(x, y)}{\left(x^{2}+y^{2}\right)^{1 / 2}}=\frac{-2 x y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\phi(x, y)
$$

Since $\phi(x, \lambda x)=\frac{-2 \lambda^{2}}{\left(1+\lambda^{2}\right)^{3 / 2}}$, its limit as (x, y) goes to $(0,0)$ does not exist. Hence f is not differentiable at the origin.

Q-5) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function.
(a): Let p be a point in \mathbb{R}^{n} and u be a unit vector in \mathbb{R}^{n}. Define the directional derivative of f in the direction of the vector u at the point p.
(b): Prove or disprove that if f is differentiable at p, then its directional derivatives in all directions exist at p.

Solution:

(a): $D_{u} f(p):=\lim _{t \rightarrow 0} \frac{f(p+t u)-f(p)}{t}$ when the derivative exists.
(b): Assume that f is differentiable at p. Take $h=t u$. By definition we have

$$
0=\lim _{t \rightarrow 0}\left|\frac{f(p+t u)-f(p)-T(t u)}{t}\right|=\lim _{t \rightarrow 0}\left|\frac{f(p+t u)-f(p)}{t}-T(u)\right| .
$$

Hence $D_{u} f(p)$ exists and is equal to $T(u)$.

