Math 302 Complex Calculus II
 Homework 1 - Solutions
 by Ersin Üreyen
 Fall 2006

1: Evaluate $\int_{0}^{\infty} \frac{d x}{1+x^{\alpha}}$ where $\alpha>1$. Take into account that $z^{\alpha}=\exp (\alpha \ln z)$ is not defined at the origin.

Solution: We first find a branch of the function z^{α}. Choose β such that $2 \pi / \alpha<\beta<2 \pi$. There exists such a β since $\alpha>1$. For $z=r e^{i \theta}$, let us take the following branch of the logarithm

$$
\begin{equation*}
\log z=\ln r+i \theta, \quad \beta-2 \pi<\theta<\beta . \tag{1}
\end{equation*}
$$

(Here, $\ln :(0, \infty) \rightarrow \mathbb{R}$ is the usual real logarithm).
Then, $z^{\alpha}=e^{\alpha \log z}$ is single-valued and analytic in $\mathcal{D}:=\mathbb{C} \backslash\left\{z=r e^{i \beta}, 0 \leq r<\infty\right\}$.
Let γ be the following contour: $\gamma:=\gamma_{1}+\gamma_{R}-\gamma_{2}-\gamma_{\epsilon}$, with

$$
\begin{aligned}
\gamma_{1} & =\{z=r: \epsilon \leq r \leq R\}, \\
\gamma_{R} & =\left\{z=R e^{i \theta}: 0 \leq \theta \leq \frac{2 \pi}{\alpha}\right\}, \\
\gamma_{2} & =\left\{z=r e^{i \frac{2 \pi}{\alpha}}: \epsilon \leq r \leq R\right\}, \\
\gamma_{\epsilon} & =\left\{z=\epsilon e^{i \theta}: 0 \leq \theta \leq \frac{2 \pi}{\alpha}\right\} .
\end{aligned}
$$

Let

$$
f(z)=\frac{1}{1+z^{\alpha}}=\frac{1}{1+e^{\alpha \log z}}, \quad z \in \mathcal{D} .
$$

We will integrate f around the contour γ. Now, f is analytic in \mathcal{D} except at the points where $1+z^{\alpha}=0$. At these points,

$$
z^{\alpha}=e^{\alpha \log z}=-1=e^{(\pi+2 k \pi) i}, \quad k \in \mathbb{Z} .
$$

Since our branch of the logarithm is as in (1), the above equation is equivalent to (for $z=r e^{i \theta}$)

$$
e^{\alpha(l n r+i \theta)}=e^{(\pi+2 k \pi) i}, \quad k \in \mathbb{Z} \text { and } \beta-2 \pi<\theta<2 \pi .
$$

Solving the above equation for r and θ we obtain

$$
\begin{gathered}
\alpha \ln r=0 \Leftrightarrow r=1, \\
\alpha \theta=\pi+2 k \pi, k \in \mathbb{Z} \text { and } \beta-2 \pi<\theta<\beta \Leftrightarrow \\
\theta=\frac{\pi}{\alpha}+\frac{2 k \pi}{\alpha}, k \in \mathbb{Z} \text { and } \beta-2 \pi<\theta<\beta .
\end{gathered}
$$

Of the above points, only $z=e^{i \pi / \alpha}$ lies inside of γ. Therefore, f is analytic inside and on γ except at the point $e^{i \pi / \alpha}$. Let us find the multiplicity of the pole of f at $z=e^{i \pi / \alpha}$:

$$
\left.\frac{d}{d z}\left(z^{\alpha}+1\right)\right|_{z=e^{i \pi / \alpha}}=\left.\alpha z^{\alpha-1}\right|_{z=e^{i \pi / \alpha}}=\alpha e^{i \frac{\pi}{\alpha}(\alpha-1)}=-\alpha e^{-i \pi / \alpha} \neq 0
$$

Hence, f has a simple pole at $z=e^{i \pi / \alpha}$ with residue $-1 /\left(\alpha e^{-i \pi / \alpha}\right)$. Applying Residue theorem, we obtain

$$
\begin{equation*}
\int_{\gamma} f(z) d z=2 \pi i \operatorname{Res}\left(f, e^{i \pi / \alpha}\right)=-\frac{2 \pi i}{\alpha e^{-i \pi / \alpha}} \tag{2}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{R}} f(z) d z-\int_{\gamma_{2}} f(z) d z-\int_{\gamma_{\epsilon}} f(z) d z \tag{3}
\end{equation*}
$$

Let us evaluate each of the integrals above.
On $\gamma_{1}: \quad z=r ; \quad d z=d r, \epsilon \leq r \leq R ; \quad z^{\alpha}=r^{\alpha}$,

$$
\int_{\gamma_{1}} f(z) d z=\int_{\epsilon}^{R} \frac{d r}{1+r^{\alpha}}
$$

On $\gamma_{R}: \quad z=R e^{i \theta} ; \quad d z=i \operatorname{Re}^{i \theta} d \theta, 0 \leq \theta \leq 2 \pi / \alpha ;$

$$
\begin{aligned}
& z^{\alpha}=e^{\alpha \log z}=e^{\alpha(\ln R+i \theta)}=R^{\alpha} e^{i \alpha \theta} \\
& \qquad \int_{\gamma_{R}} f(z) d z=\int_{0}^{2 \pi / \alpha} \frac{i R e^{i \theta} d \theta}{1+R^{\alpha} e^{i \alpha \theta}} .
\end{aligned}
$$

For $R>1$,

$$
\left|1+R^{\alpha} e^{i \alpha \theta}\right| \geq\left|R^{\alpha} e^{i \alpha \theta}\right|-1=R^{\alpha}-1
$$

Therefore,

$$
\left|\int_{\gamma_{R}} f(z) d z\right| \leq \int_{0}^{2 \pi / \alpha} \frac{R}{R^{\alpha}-1} d \theta=\frac{2 \pi}{\alpha} \frac{R}{R^{\alpha}-1}
$$

Since $\alpha>1$,

$$
\int_{\gamma_{R}} f(z) d z \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

On $\gamma_{2}: \quad z=r e^{i 2 \pi / \alpha} ; \quad d z=e^{i 2 \pi / \alpha} d r, \epsilon \leq r \leq R ;$

$$
\begin{aligned}
z^{\alpha}=e^{\alpha \log z}=e^{\alpha(\operatorname{lnr+i2\pi /\alpha)}}= & e^{\alpha \ln r+i 2 \pi}=r^{\alpha} . \\
\int_{\gamma_{2}} f(z) d z & =\int_{\epsilon}^{R} \frac{e^{i 2 \pi / \alpha} d r}{1+r^{\alpha}}=e^{i 2 \pi / \alpha} \int_{\epsilon}^{R} \frac{d r}{1+r^{\alpha}} .
\end{aligned}
$$

On $\gamma_{\epsilon}: \quad z=\epsilon e^{i \theta} ; \quad d z=i \epsilon e^{i \theta} d \theta, 0 \leq \theta \leq 2 \pi / \alpha ;$

$$
\begin{aligned}
z^{\alpha}=e^{\alpha \log z}=e^{\alpha(l \ln +i \theta)} & =\epsilon^{\alpha} e^{i \alpha \theta} . \\
& \int_{\gamma_{\epsilon}} f(z) d z=\int_{0}^{2 \pi / \alpha} \frac{i \epsilon e^{i \theta} d \theta}{1+\epsilon^{\alpha} e^{i \alpha \theta}} .
\end{aligned}
$$

For $\epsilon<1$, we have

$$
\left|1+\epsilon^{\alpha} e^{i \alpha \theta}\right| \geq 1-\left|\epsilon^{\alpha} e^{i \alpha \theta}\right|=1-\epsilon^{\alpha}
$$

So,

$$
\left|\int_{\gamma_{\epsilon}} f(z) d z\right| \leq \int_{0}^{2 \pi / \alpha} \frac{\epsilon}{1-\epsilon^{\alpha}} d \theta=\frac{2 \pi}{\alpha} \frac{\epsilon}{1-\epsilon^{\alpha}} .
$$

As $\epsilon \rightarrow 0, \epsilon /\left(1-\epsilon^{\alpha}\right) \rightarrow 0$. Therefore,

$$
\int_{\gamma_{\epsilon}} f(z) d z \rightarrow 0 \quad \text { as } \epsilon \rightarrow 0
$$

By (2) and (3),

$$
\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{R}} f(z) d z-\int_{\gamma_{2}} f(z) d z-\int_{\gamma_{\epsilon}} f(z) d z=\int_{\gamma} f(z) d z=-\frac{2 \pi i}{\alpha e^{-i \pi / \alpha}}
$$

Taking limits as $\epsilon \rightarrow 0$ and $R \rightarrow \infty$, we get

$$
\begin{aligned}
\lim _{\substack{\varepsilon \rightarrow 0 \\
R \rightarrow \infty}}\left[\int_{\gamma_{1}} f+\int_{\gamma_{R}} f-\int_{\gamma_{2}} f-\int_{\gamma_{\epsilon}} f\right] & =-\frac{2 \pi i}{\alpha e^{-i \pi / \alpha}} \\
\left(1-e^{i 2 \pi / \alpha}\right) \cdot \int_{0}^{\infty} \frac{d r}{1+r^{\alpha}} & =-\frac{2 \pi i}{\alpha e^{-i \pi / \alpha}}
\end{aligned}
$$

. We conclude,

$$
\int_{0}^{\infty} \frac{d r}{1+r^{\alpha}}=-\frac{2 \pi i}{\alpha} \frac{1}{\left(e^{-i \pi / \alpha}-e^{i \pi / \alpha}\right)}=\frac{\pi / \alpha}{\left(e^{i \pi / \alpha}-e^{-i \pi / \alpha}\right) / 2 i}=\frac{\pi / \alpha}{\sin (\pi / \alpha)}
$$

2: Evaluate $\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{n}}$ where $n \geq 1$ is an integer.
Solution: Write

$$
f(z)=\frac{1}{\left(1+z^{2}\right)^{n}}
$$

Let γ be the following contour $(R>1): \gamma=\gamma_{1}+\gamma_{R}$, with

$$
\begin{aligned}
\gamma_{1} & =\{z=r:-R \leq r \leq R\} \\
\gamma_{R} & =\left\{z=R e^{i \theta}: 0 \leq \theta \leq \pi\right\}
\end{aligned}
$$

We will evaluate $\int_{\gamma} f(z) d z$ in two ways.
f is analytic in \mathbb{C} except at the points where $\left(1+z^{2}\right)^{n}=0$. The factorization $\left(1+z^{2}\right)^{n}=$ $(z-i)^{n}(z+i)^{n}$ shows that $\left(1+z^{2}\right)^{n}$ has zeros at the points $z=i$ and $z=-i$ with multiplicity n. We conclude that f is analytic inside and on γ except at the point $z=i$, where it has a pole of multiplicity n. The residue of f at $z=i$ is:

$$
\begin{aligned}
\operatorname{Res}(f, i) & =\left.\frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left((z-i)^{n} f(z)\right)\right|_{z=i}=\left.\frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left(\frac{1}{(z+i)^{n}}\right)\right|_{z=i} \\
& =\left.\frac{1}{(n-1)!}(-1)^{n-1} \frac{n \cdot(n+1) \ldots(2 n-2)}{(z+i)^{2 n-1}}\right|_{z=i} \\
& =\frac{1}{(n-1)!}(-1)^{n-1} \frac{(2 n-2)!}{(n-1)!} \frac{1}{(2 i)^{2 n-1}} \\
& =\frac{(-1)^{n-1}}{i^{2 n-1}} \frac{(2 n-2)!}{(n-1)!(n-1)!} \frac{1}{2^{2 n-1}} .
\end{aligned}
$$

By Residue theorem,

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =2 \pi i \operatorname{Res}(f, i)=\pi \frac{(-1)^{n-1}}{\left(i^{2}\right)^{n-1}} \frac{(2 n-2)!}{(n-1)!(n-1)!} \frac{1}{2^{2 n-2}} \\
& =\frac{\pi(2 n-2)!}{(n-1)!(n-1)!2^{2 n-2}}
\end{aligned}
$$

On the other hand,

$$
\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{R}} f(z) d z
$$

On $\gamma_{1}: \quad z=r ; \quad d z=d r,-R \leq r \leq R$.

$$
\int_{\gamma_{1}} f(z) d z=\int_{-R}^{R} \frac{d r}{\left(1+r^{2}\right)^{n}}
$$

On $\gamma_{R}: \quad z=R e^{i \theta} ; \quad d z=i \operatorname{Re}^{i \theta} d \theta, 0 \leq r \leq \pi$.

$$
\int_{\gamma_{R}} f(z) d z=\int_{0}^{\pi} \frac{i R e^{i \theta}}{\left(1+R^{2} e^{i 2 \theta}\right)^{n}} d \theta
$$

For $R>1,\left|1+R^{2} e^{i 2 \theta}\right| \geq\left|R^{2} e^{i 2 \theta}\right|-1=R^{2}-1$. Therefore,

$$
\left|\int_{\gamma_{R}} f(z) d z\right| \leq \int_{0}^{\pi} \frac{R}{\left(R^{2}-1\right)^{n}}=\frac{\pi R}{\left(R^{2}-1\right)^{n}} d \theta
$$

Since $n \geq 1, \int_{\gamma_{R}} f(z) d z \rightarrow 0$ as $R \rightarrow \infty$.
We conclude

$$
\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{R}} f(z) d z=\int_{\gamma} f(z) d z=\frac{\pi(2 n-2)!}{(n-1)!(n-1)!2^{2 n-2}} .
$$

Letting $R \rightarrow \infty$, we obtain

$$
\int_{-\infty}^{\infty} \frac{d r}{\left(1+r^{2}\right)^{n}}=\frac{\pi(2 n-2)!}{(n-1)!(n-1)!2^{2 n-2}}
$$

Therefore,

$$
\int_{0}^{\infty} \frac{d r}{\left(1+r^{2}\right)^{n}}=\frac{\pi(2 n-2)!}{(n-1)!(n-1)!2^{2 n-1}}
$$

3: Find a conformal mapping of the disc $x^{2}+(y-1)^{2}<1$ onto the first quadrant $x, y>0$. Investigate the conformal property of your map also on the boundaries.

Solution: Let $f_{1}(z)=z-i$. Then f_{1} maps the disc $\left\{z=x+i y: x^{2}+(y-1)^{2}<1\right\}$ conformally onto the unit disc $\left\{z=x+i y: x^{2}+y^{2}<1\right\}$.

Let $f_{2}(z)=(z-1) /(z+1)$. Then f_{2} maps the unit disc conformally onto the left half plane $\{z=x+i y: x<0\}$.

Let $f_{3}(z)=-i z$. Then f_{3} maps the left half plane conformally onto the upper half plane $\{z=x+i y: y>0\}$.

Let

$$
f_{4}(z)=\sqrt{z}=e^{\frac{1}{2} \log z}, \quad z \in \mathcal{D}:=\mathbb{C} \backslash\left\{z=r e^{-i \pi / 2}: 0 \leq r<\infty\right\},
$$

where for $z \in \mathcal{D}, \log z=\ln r+i \theta,-\pi / 2<\theta<3 \pi / 2$. Then f_{4} maps the upper half plane conformally onto the first quadrant $\{z=x+i y: x>0, y>0\}$.

Write

$$
f(z)=f_{4} \circ f_{3} \circ f_{2} \circ f_{1}(z)=\sqrt{-i \frac{z-i-1}{z-i+1}},
$$

where the meaning of "square root" is as in explained above. Then f maps the disc $\left\{z=x+i y: x^{2}+(y-1)^{2}<1\right\}$ conformally onto the first quadrant.
f is conformal at the boundary of the disc $\left\{z=x+i y: x^{2}+(y-1)^{2}<1\right\}$, except at the points $z=-1+i$ and $z=1+i$. It is clear that f is undefined at the point $z=-1+i$. At $z=1+i, f$ is also undefined since f_{4} is undefined at $z=0$.

4: Describe the image of the unit disc under the transformation $\ln \left(\frac{z-1}{z+1}\right)$, where an appropriate branch of the logarithm is used.

Solution: Let $f_{1}(z)=(z-1) /(z+1)$. Then f_{1} maps the unit disc conformally onto the left half plane $\{z=x+i y: x<0\}$. Take the following branch of the logarithm

$$
\log z=\ln r+i \theta, \quad 0<\theta<2 \pi, \quad z=r e^{i \theta} .
$$

Then $\log z$ maps the left half plane conformally on the strip $\{z=x+i y: \pi / 2<y<3 \pi / 2\}$.
Comments and questions to: Ersin Üreyen ureyen@fen.bilkent.edu.tr.

