Math 302 Complex Calculus II Homework 1 – Solutions by Ersin Üreyen Fall 2006

1: Evaluate $\int_0^\infty \frac{dx}{1+x^{\alpha}}$ where $\alpha > 1$. Take into account that $z^{\alpha} = exp(\alpha \ln z)$ is not defined at the origin.

Solution: We first find a branch of the function z^{α} . Choose β such that $2\pi/\alpha < \beta < 2\pi$. There exists such a β since $\alpha > 1$. For $z = re^{i\theta}$, let us take the following branch of the logarithm

 $\log z = \ln r + i\theta, \quad \beta - 2\pi < \theta < \beta. \tag{1}$

(Here, $ln: (0, \infty) \to \mathbb{R}$ is the usual real logarithm).

Then, $z^{\alpha} = e^{\alpha \log z}$ is single-valued and analytic in $\mathcal{D} := \mathbb{C} \setminus \{z = re^{i\beta}, 0 \le r < \infty\}$.

Let γ be the following contour: $\gamma := \gamma_1 + \gamma_R - \gamma_2 - \gamma_{\epsilon}$, with

$$\begin{split} \gamma_1 &= \{z = r : \ \epsilon \le r \le R\}, \\ \gamma_R &= \{z = Re^{i\theta} : \ 0 \le \theta \le \frac{2\pi}{\alpha}\}, \\ \gamma_2 &= \{z = re^{i\frac{2\pi}{\alpha}} : \ \epsilon \le r \le R\}, \\ \gamma_\epsilon &= \{z = \epsilon e^{i\theta} : \ 0 \le \theta \le \frac{2\pi}{\alpha}\}. \end{split}$$

Let

$$f(z) = \frac{1}{1+z^{\alpha}} = \frac{1}{1+e^{\alpha \log z}}, \qquad z \in \mathcal{D}.$$

We will integrate f around the contour γ . Now, f is analytic in \mathcal{D} except at the points where $1 + z^{\alpha} = 0$. At these points,

 $z^{\alpha} = e^{\alpha \log z} = -1 = e^{(\pi + 2k\pi)i}, \quad k \in \mathbb{Z}.$

Since our branch of the logarithm is as in (1), the above equation is equivalent to (for $z = re^{i\theta}$)

$$e^{\alpha(lnr+i\theta)} = e^{(\pi+2k\pi)i}, \quad k \in \mathbb{Z} \text{ and } \beta - 2\pi < \theta < 2\pi.$$

Solving the above equation for r and θ we obtain

$$\alpha \ln r = 0 \iff r = 1,$$

$$\alpha \theta = \pi + 2k\pi, \ k \in \mathbb{Z} \text{ and } \beta - 2\pi < \theta < \beta \iff$$

$$\theta = \frac{\pi}{\alpha} + \frac{2k\pi}{\alpha}, \ k \in \mathbb{Z} \text{ and } \beta - 2\pi < \theta < \beta.$$

Of the above points, only $z = e^{i\pi/\alpha}$ lies inside of γ . Therefore, f is analytic inside and on γ except at the point $e^{i\pi/\alpha}$. Let us find the multiplicity of the pole of f at $z = e^{i\pi/\alpha}$:

$$\frac{d}{dz}(z^{\alpha}+1)\Big|_{z=e^{i\pi/\alpha}} = \alpha z^{\alpha-1}\Big|_{z=e^{i\pi/\alpha}} = \alpha e^{i\frac{\pi}{\alpha}(\alpha-1)} = -\alpha e^{-i\pi/\alpha} \neq 0.$$

Hence, f has a simple pole at $z = e^{i\pi/\alpha}$ with residue $-1/(\alpha e^{-i\pi/\alpha})$. Applying Residue theorem, we obtain

$$\int_{\gamma} f(z) \, dz = 2\pi i \, \operatorname{Res}(f, e^{i\pi/\alpha}) = -\frac{2\pi i}{\alpha e^{-i\pi/\alpha}}.$$
(2)

On the other hand,

$$\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_R} f(z) dz - \int_{\gamma_2} f(z) dz - \int_{\gamma_\epsilon} f(z) dz.$$
(3)

Let us evaluate each of the integrals above.

On γ_1 : z = r; dz = dr, $\epsilon \le r \le R$; $z^{\alpha} = r^{\alpha}$,

$$\int_{\gamma_1} f(z) \, dz = \int_{\epsilon}^{R} \frac{dr}{1 + r^{\alpha}}.$$

On γ_R : $z = Re^{i\theta}$; $dz = iRe^{i\theta} d\theta$, $0 \le \theta \le 2\pi/\alpha$;

 $z^{\alpha} = e^{\alpha \log z} = e^{\alpha (lnR + i\theta)} = R^{\alpha} e^{i\alpha\theta}.$

$$\int_{\gamma_R} f(z) \, dz = \int_0^{2\pi/\alpha} \frac{iRe^{i\theta}d\theta}{1 + R^\alpha e^{i\alpha\theta}}.$$

For R > 1,

$$|1 + R^{\alpha} e^{i\alpha\theta}| \ge |R^{\alpha} e^{i\alpha\theta}| - 1 = R^{\alpha} - 1.$$

Therefore,

$$\left| \int_{\gamma_R} f(z) \, dz \right| \le \int_0^{2\pi/\alpha} \frac{R}{R^\alpha - 1} d\theta = \frac{2\pi}{\alpha} \frac{R}{R^\alpha - 1}.$$

Since $\alpha > 1$,

$$\int_{\gamma_R} f(z) \, dz \to 0 \quad \text{as } R \to \infty.$$

On γ_2 : $z = re^{i2\pi/\alpha}; \quad dz = e^{i2\pi/\alpha}dr, \ \epsilon \le r \le R;$

$$z^{\alpha} = e^{\alpha \log z} = e^{\alpha(\ln r + i2\pi/\alpha)} = e^{\alpha \ln r + i2\pi} = r^{\alpha}.$$
$$\int_{\gamma_2} f(z) \ dz = \int_{\epsilon}^{R} \frac{e^{i2\pi/\alpha} dr}{1 + r^{\alpha}} = e^{i2\pi/\alpha} \int_{\epsilon}^{R} \frac{dr}{1 + r^{\alpha}}.$$

 $\text{On } \gamma_{\epsilon} : \quad z = \epsilon e^{i\theta}; \quad dz = i\epsilon e^{i\theta} \ d\theta, \ 0 \leq \theta \leq 2\pi/\alpha;$

 $z^{\alpha} = e^{\alpha \log z} = e^{\alpha (ln\epsilon + i\theta)} = \epsilon^{\alpha} e^{i\alpha\theta}.$

$$\int_{\gamma_{\epsilon}} f(z) \, dz = \int_{0}^{2\pi/\alpha} \frac{i\epsilon e^{i\theta} d\theta}{1 + \epsilon^{\alpha} e^{i\alpha\theta}}.$$

For $\epsilon < 1$, we have

$$|1 + \epsilon^{\alpha} e^{i\alpha\theta}| \ge 1 - |\epsilon^{\alpha} e^{i\alpha\theta}| = 1 - \epsilon^{\alpha}.$$

So,

$$\left| \int_{\gamma_{\epsilon}} f(z) \, dz \right| \leq \int_{0}^{2\pi/\alpha} \frac{\epsilon}{1 - \epsilon^{\alpha}} d\theta = \frac{2\pi}{\alpha} \frac{\epsilon}{1 - \epsilon^{\alpha}}.$$

As $\epsilon \to 0$, $\epsilon/(1-\epsilon^{\alpha}) \to 0$. Therefore,

$$\int_{\gamma_{\epsilon}} f(z) \, dz \to 0 \quad \text{as } \epsilon \to 0.$$

By (2) and (3),

$$\int_{\gamma_1} f(z) \, dz + \int_{\gamma_R} f(z) \, dz - \int_{\gamma_2} f(z) \, dz - \int_{\gamma_\epsilon} f(z) \, dz = \int_{\gamma} f(z) \, dz = -\frac{2\pi i}{\alpha e^{-i\pi/\alpha}}.$$

Taking limits as $\epsilon \to 0$ and $R \to \infty$, we get

$$\lim_{\substack{\epsilon \to 0 \\ R \to \infty}} \left[\int_{\gamma_1} f + \int_{\gamma_R} f - \int_{\gamma_2} f - \int_{\gamma_\epsilon} f \right] = -\frac{2\pi i}{\alpha e^{-i\pi/\alpha}}$$
$$\left(1 - e^{i2\pi/\alpha}\right) \cdot \int_0^\infty \frac{dr}{1 + r^\alpha} = -\frac{2\pi i}{\alpha e^{-i\pi/\alpha}}$$

. We conclude,

$$\int_0^\infty \frac{dr}{1+r^\alpha} = -\frac{2\pi i}{\alpha} \frac{1}{\left(e^{-i\pi/\alpha} - e^{i\pi/\alpha}\right)} = \frac{\pi/\alpha}{\left(e^{i\pi/\alpha} - e^{-i\pi/\alpha}\right)/2i} = \frac{\pi/\alpha}{\sin(\pi/\alpha)}$$

2: Evaluate
$$\int_0^\infty \frac{dx}{(1+x^2)^n}$$
 where $n \ge 1$ is an integer.

Solution: Write

$$f(z) = \frac{1}{(1+z^2)^n}$$

Let γ be the following contour (R > 1): $\gamma = \gamma_1 + \gamma_R$, with

$$\gamma_1 = \{ z = r : -R \le r \le R \}, \gamma_R = \{ z = Re^{i\theta} : 0 \le \theta \le \pi \}.$$

We will evaluate $\int_{\gamma} f(z) dz$ in two ways.

f is analytic in \mathbb{C} except at the points where $(1+z^2)^n = 0$. The factorization $(1+z^2)^n = (z-i)^n(z+i)^n$ shows that $(1+z^2)^n$ has zeros at the points z = i and z = -i with multiplicity n. We conclude that f is analytic inside and on γ except at the point z = i, where it has a pole of multiplicity n. The residue of f at z = i is:

$$\begin{aligned} \operatorname{Res}(f,i) &= \left. \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} ((z-i)^n f(z)) \right|_{z=i} = \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} (\frac{1}{(z+i)^n}) \right|_{z=i} \\ &= \left. \frac{1}{(n-1)!} (-1)^{n-1} \frac{n \cdot (n+1) \dots (2n-2)}{(z+i)^{2n-1}} \right|_{z=i} \\ &= \left. \frac{1}{(n-1)!} (-1)^{n-1} \frac{(2n-2)!}{(n-1)!} \frac{1}{(2i)^{2n-1}} \right|_{z=i} \\ &= \left. \frac{(-1)^{n-1}}{i^{2n-1}} \frac{(2n-2)!}{(n-1)!(n-1)!} \frac{1}{2^{2n-1}}. \end{aligned}$$

By Residue theorem,

$$\begin{aligned} \int_{\gamma} f(z)dz &= 2\pi i \operatorname{Res}(f,i) = \pi \frac{(-1)^{n-1}}{(i^2)^{n-1}} \frac{(2n-2)!}{(n-1)!(n-1)!} \frac{1}{2^{2n-2}} \\ &= \frac{\pi (2n-2)!}{(n-1)!(n-1)!2^{2n-2}}. \end{aligned}$$

On the other hand,

$$\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_R} f(z)dz.$$
$$dz = dr \quad -R \le r \le R$$

On γ_1 : z = r; dz = dr, $-R \le r \le R$.

$$\int_{\gamma_1} f(z) dz = \int_{-R}^{R} \frac{dr}{(1+r^2)^n}.$$

On γ_R : $z = Re^{i\theta}$; $dz = iRe^{i\theta}d\theta$, $0 \le r \le \pi$. $\int_{\gamma_R} f(z)dz = \int_0^{\pi} \frac{iRe^{i\theta}}{(1+R^2e^{i2\theta})^n}d\theta.$ For R > 1, $|1 + R^2 e^{i2\theta}| \ge |R^2 e^{i2\theta}| - 1 = R^2 - 1$. Therefore,

$$\left| \int_{\gamma_R} f(z) dz \right| \le \int_0^\pi \frac{R}{(R^2 - 1)^n} = \frac{\pi R}{(R^2 - 1)^n} d\theta.$$

Since $n \ge 1$, $\int_{\gamma_R} f(z) dz \to 0$ as $R \to \infty$.

We conclude

$$\int_{\gamma_1} f(z)dz + \int_{\gamma_R} f(z)dz = \int_{\gamma} f(z)dz = \frac{\pi(2n-2)!}{(n-1)!(n-1)!2^{2n-2}}$$

Letting $R \to \infty$, we obtain

$$\int_{-\infty}^{\infty} \frac{dr}{(1+r^2)^n} = \frac{\pi(2n-2)!}{(n-1)!(n-1)!2^{2n-2}}.$$

Therefore,

$$\int_0^\infty \frac{dr}{(1+r^2)^n} = \frac{\pi(2n-2)!}{(n-1)!(n-1)!2^{2n-1}}.$$

3: Find a conformal mapping of the disc $x^2 + (y - 1)^2 < 1$ onto the first quadrant x, y > 0. Investigate the conformal property of your map also on the boundaries.

Solution: Let $f_1(z) = z - i$. Then f_1 maps the disc $\{z = x + iy : x^2 + (y - 1)^2 < 1\}$ conformally onto the unit disc $\{z = x + iy : x^2 + y^2 < 1\}$.

Let $f_2(z) = (z - 1)/(z + 1)$. Then f_2 maps the unit disc conformally onto the left half plane $\{z = x + iy : x < 0\}$.

Let $f_3(z) = -iz$. Then f_3 maps the left half plane conformally onto the upper half plane $\{z = x + iy : y > 0\}.$

Let

$$f_4(z) = \sqrt{z} = e^{\frac{1}{2}\log z}, \qquad z \in \mathcal{D} := \mathbb{C} \setminus \{ z = re^{-i\pi/2} : 0 \le r < \infty \},$$

where for $z \in \mathcal{D}$, $\log z = lnr + i\theta$, $-\pi/2 < \theta < 3\pi/2$. Then f_4 maps the upper half plane conformally onto the first quadrant $\{z = x + iy : x > 0, y > 0\}$.

Write

$$f(z) = f_4 \circ f_3 \circ f_2 \circ f_1(z) = \sqrt{-i\frac{z-i-1}{z-i+1}}$$

where the meaning of "square root" is as in explained above. Then f maps the disc $\{z = x + iy : x^2 + (y - 1)^2 < 1\}$ conformally onto the first quadrant.

f is conformal at the boundary of the disc $\{z = x + iy : x^2 + (y-1)^2 < 1\}$, except at the points z = -1 + i and z = 1 + i. It is clear that f is undefined at the point z = -1 + i. At z = 1 + i, f is also undefined since f_4 is undefined at z = 0.

4: Describe the image of the unit disc under the transformation $\ln\left(\frac{z-1}{z+1}\right)$, where an appropriate branch of the logarithm is used.

Solution: Let $f_1(z) = (z-1)/(z+1)$. Then f_1 maps the unit disc conformally onto the left half plane $\{z = x + iy : x < 0\}$. Take the following branch of the logarithm

 $\log z = lnr + i\theta, \quad 0 < \theta < 2\pi, \quad z = re^{i\theta}.$

Then $\log z$ maps the left half plane conformally on the strip $\{z = x + iy : \pi/2 < y < 3\pi/2\}$.

Comments and questions to: Ersin Üreyen <ureyen@fen.bilkent.edu.tr>.