Solutions for Math 302 Homework-2 prepared by Ersin Üreyen.

Question 1: Let $H=\{z \in \mathbb{C} \mid \operatorname{Im} z \geq 0\}$ and $f: H \longrightarrow \mathbb{C}$ be a nonconstant analytic function with $\sup _{z \in H}|f(z)|=1$. Construct such a function f with
(i) $\left|f\left(z_{0}\right)\right|=1$ for some $z_{0} \in H$.
(ii) $|f(z)|<1$ for all $z \in H$.

Solution 1. (i) Let $f(z)=e^{i z}$. Then $|f(z)|=\left|e^{i(x+i y)}\right|=e^{\operatorname{Re}(i x-y)}=$ $e^{-y} \leq 1$, since if $z=x+i y \in H$, then $y \geq 0$. For $z=x, x \in \mathbb{R}$, we have $|f(z)|=1$.
(ii) Let $f(z)=z /(z+i)$. Then

$$
|f(z)|=\sqrt{\frac{x^{2}+y^{2}}{x^{2}+(y+1)^{2}}}<1,
$$

since $y \geq 0$. To show that $\sup _{z \in H}|f(z)|=1$, let $z_{n}=n i, n \in \mathbb{N}$. Then $\left|f\left(z_{n}\right)\right|=n /(n+1) \rightarrow 1$ as $n \rightarrow \infty$.

Question 2: Let $D=\{z \in \mathbb{C} \mid R e z \geq 0\}$. Construct a nonconstant analytic function $f: D \longrightarrow \mathbb{C}$ with $|f(z)| \leq 1$ on D such that for every $\epsilon>0$ there is a corresponding $A_{\epsilon} \in \mathbb{R}$ with $|f(z)| \leq A_{\epsilon} e^{\epsilon|z|}$ for all $z \in D$.

Solution 2. Let $f(z)=e^{-z}$. Then $|f(z)|=\left|e^{-z}\right|=e^{R e(-x-i y)}=e^{-x} \leq 1$, since if $z=x+i y \in D$, then $x \geq 0$.

Let $A_{\epsilon}=1$. Since $e^{\epsilon|z|} \geq 1$, it follows that $|f(z)| \leq 1 \leq A_{\epsilon} e^{\epsilon|z|}, \forall z \in D$.

Question 3: Find a counterexample to Corollary 16.6 on page 202 when D is a proper subset of \mathbb{C} but is not compact.

Solution 3. Let $A=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$. Then $\partial A=\{z \in \mathbb{C} \mid \operatorname{Im} z=0\}$. Let $u_{1}(x, y)=0, u_{2}(x, y)=y$. Clearly, u_{1} and u_{2} agree on ∂A but $u_{1}(z) \neq$ $u_{2}(z), z \in A$.

Question 4: Consider the function $g(z)$ constructed in the proof of Theorem 16.8 on page 205. Show that
(i) g is continuous in the unit disk.
(ii) g is analytic in the unit disk.

Solution 4. Let

$$
f(\theta, z)=\frac{e^{i \theta}+z}{e^{i \theta}-z}, \quad \theta \in[0,2 \pi], z \in D(0 ; 1) .
$$

(i) Since u is continuous on $C(0 ; 1)$ and $C(0 ; 1)$ is compact, there exists M such that

$$
\left|u\left(e^{i \theta}\right)\right| \leq M, \quad \theta \in[0,2 \pi] .
$$

I.way: Fix $z_{0} \in D(0 ; 1)$. Let $d=\left(1-\left|z_{0}\right|\right)$. We have

$$
\left|f(\theta, z)-f\left(\theta, z_{0}\right)\right|=\left|\frac{e^{i \theta}+z}{e^{i \theta}-z}-\frac{e^{i \theta}+z_{0}}{e^{i \theta}-z_{0}}\right|=\left|\frac{2\left(z-z_{0}\right)}{\left(e^{i \theta}-z\right)\left(e^{i \theta}-z_{0}\right)}\right| .
$$

Take $\epsilon>0$. Let

$$
\delta=\min \left\{\frac{d}{2}, \frac{\epsilon d^{2}}{4 M}\right\}
$$

By triangular inequality, $\left|e^{i \theta}-z_{0}\right| \geq\left|e^{i \theta}\right|-\left|z_{0}\right|=1-\left|z_{0}\right|=d$. Again, by triangular inequality, for $\left|z-z_{0}\right|<\delta$,

$$
\left|e^{i \theta}-z\right| \geq\left|e^{i \theta}-z_{0}\right|-\left|z-z_{0}\right| \geq d-\frac{d}{2}=\frac{d}{2}
$$

Hence, for $\left|z-z_{0}\right|<\delta$ and for all $\theta \in[0,2 \pi]$,

$$
\begin{equation*}
\left|f(\theta, z)-f\left(\theta, z_{0}\right)\right|<\frac{2 \epsilon d^{2} /(4 M)}{d \cdot d / 2}=\frac{\epsilon}{M} \tag{1}
\end{equation*}
$$

Therefore, for $\left|z-z_{0}\right|<\delta$,

$$
\begin{aligned}
\left|g(z)-g\left(z_{0}\right)\right| & =\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} u\left(e^{i \theta}\right)\left[f(\theta, z)-f\left(\theta, z_{0}\right)\right] d \theta\right| \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} M\left|f(\theta, z)-f\left(\theta, z_{0}\right)\right| d \theta \\
& \leq \frac{1}{2 \pi} 2 \pi M \frac{\epsilon}{M}=\epsilon .
\end{aligned}
$$

This shows that g is continuous at z_{0}. Since $z_{0} \in D(0 ; 1)$ is arbitrary, g is continuous on $D(0 ; 1)$.
II.way. Fix $z_{0} \in D$. Let $d=\left(1-\left|z_{0}\right|\right)$. Let $E=\left\{z| | z-z_{0} \mid \leq d / 2\right\}$ and $F=[0,2 \pi] \times E$. Since $f(\theta, z)$ is continuous on F and F is compact, f is uniformly continuous on F. Take $\epsilon>0$. By uniform continuity of f, there exists $\delta<d / 2$ such that

$$
\left|f\left(\theta^{\prime}, z\right)-f\left(\theta, z_{0}\right)\right|<\frac{\epsilon}{M}, \quad \text { for }\left|\theta^{\prime}-\theta\right|<\delta \text { and }\left|z-z_{0}\right|<\delta .
$$

Take $\theta^{\prime}=\theta$. Then

$$
\begin{equation*}
\left|f(\theta, z)-f\left(\theta, z_{0}\right)\right|<\frac{\epsilon}{M}, \quad \text { for }\left|z-z_{0}\right|<\delta, \theta \in[0,2 \pi] . \tag{2}
\end{equation*}
$$

This shows (1). Now proceed as above.
The crucial point in the above argument is to show that the δ in (2) is independent of θ. The following argument is not sufficient: "Since f is continuous with respect to z, there exists δ such that (2) holds."
(ii) Let Γ be the boundary of an arbitrary closed rectangle lying in $D(0 ; 1)$. The function $u\left(e^{i \theta}\right) f(\theta, z)$ is continuous on $[0,2 \pi] \times \Gamma$. By Fubini's theorem

$$
\int_{\Gamma} g(z) d z=\frac{1}{2 \pi} \int_{\Gamma} \int_{0}^{2 \pi} u\left(e^{i \theta}\right) f(\theta, z) d \theta d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(e^{i \theta}\right) \int_{\Gamma} f(\theta, z) d z d \theta
$$

Since $f(\theta, z)$, as a function of z, is analytic in $D(0 ; 1)$, by Cauchy's theorem $\int_{\Gamma} f(\theta, z) d z=0$. This shows that $\int_{\Gamma} g(z) d z=0$. By Morera's theorem g is analytic in $D(0 ; 1)$.

Question 5: Find a C-harmonic function $u(x, y)$ on the unit disk D with $u(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+f$ on ∂D, where the a, b, \ldots, f are arbitrary real constants.

Solution 5. Let $u_{1}(x, y)=\left(x^{2}-y^{2}+1\right) / 2$. Since $u_{x x}+u_{y y}=0, u_{1}$ is harmonic in \mathbb{C}. On ∂D we have $x^{2}+y^{2}=1$. Therefore,

$$
u_{1}(x, y)=\frac{x^{2}-y^{2}+\left(x^{2}+y^{2}\right)}{2}=x^{2}, \quad(x, y) \in \partial D
$$

Let $u_{2}(x, y)=\left(y^{2}-x^{2}+1\right) / 2$. Similarly, u_{2} is harmonic in \mathbb{C}, and on ∂D, $u_{2}(x, y)=y^{2}$.

Let $u(x, y)=a u_{1}(x, y)+b x y+c u_{2}(x, y)+d x+e y+f$. Then u is harmonic in \mathbb{C}, therefore C-harmonic in D and satisfies the required conditions. Note that, by Corollary $16.6, u$ is unique.

