Due on November 8, 2006, Wednesday, Class time. No late submissions!

MATH 302 Homework 2

1: Let $H = \{z \in \mathbb{C} \mid Im \ z \ge 0\}$ and $f : H \longrightarrow \mathbb{C}$ be a nonconstant analytic function with $\sup_{z \in H} |f(z)| = 1$. Construct such a function f with (i) $|f(z_0)| = 1$ for some $z_0 \in H$. (ii) |f(z)| < 1 for all $z \in H$.

2: Let $D = \{z \in \mathbb{C} \mid Re \ z \ge 0\}$. Construct a nonconstant analytic function $f : D \longrightarrow \mathbb{C}$ with $|f(z)| \le 1$ on D such that for every $\epsilon > 0$ there is a corresponding $A_{\epsilon} \in \mathbb{R}$ with $|f(z)| \le A_{\epsilon}e^{\epsilon|z|}$ for all $z \in D$.

3: Find a counterexample to Corollary 16.6 on page 202 when D is a proper subset of \mathbb{C} but is not compact.

4: Consider the function g(z) constructed in the proof of Theorem 16.8 on page 205. Show that

(i) g is continuous in the unit disk.

(ii) g is analytic in the unit disk.

5: Find a C-harmonic function u(x, y) on the unit disk D with $u(x, y) = ax^2 + bxy + cy^2 + dx + ey + f$ on ∂D , where the a, b, \ldots, f are arbitrary real constants.

Show your work in detail. Justify all your claims. No correct answer is accepted unless you prove that it is correct!