Due on December 11, 2006, Monday, Class time. No late submissions!

MATH 302 Homework 3 - Solutions

1: Find an integral expression for $\Gamma^{\prime}(z)$ for $R e z>0$. Justify your steps.
Solution: Clearly the temptation is to take the derivative under the integral sign first and then check if it is valid. We use the following advanced calculus theorem:

Theorem: Let $f:(0, \infty) \times[c, d] \longrightarrow \mathbb{R}$ be continuous, where $c, d \in \mathbb{R}$ are fixed, and the improper integral

$$
F(x)=\int_{0}^{\infty} f(t, x) d t
$$

exists for all $x \in[c, d]$. Assume that $\frac{d}{d x} f(t, x)$ exists and is continuous on $(0, \infty) \times[c, d]$ and that

$$
\phi(x)=\int_{0}^{\infty} \frac{d}{d x} f(t, x) d t
$$

converges uniformly on $[c, d]$. Then $F(x)$ is differentiable on $[c, d]$ and $F^{\prime}(x)=\phi(x)$ for all $x \in[c, d]$.

Using this you can show that the derivative of Gamma function under the integral sign converges uniformly on compacta for $\Re z>0$, and this justifies the result.

2: Prove that $\Gamma(z)=\lim _{n \rightarrow \infty} \int_{0}^{\infty} t^{z-1}\left(1-\frac{t}{n}\right)^{n} d t$, Re $z>0$.
Solution: This can be attacked by uniform convergence theorems which allow interchange of limit and integral but an elementary approach by comparing e^{-t} with $\left(1-\frac{t}{n}\right)^{n}$ works fine here. This is Exercise 6 on page 242 and the solution is on page 288.

3: Find the radius of convergence for $f(z)=\sum_{n=0}^{\infty} z^{n!}$ and show that its circle of convergence is a natural boundary.

Solution: The radius of convergence is clearly 1. Direct application of Theorem 18.5 on page 231 shows that the boundary is natural.

4: Show that $\Gamma(z+1)=z \Gamma(z)$ for all $z \in \mathbb{C}$ except for $z=-n$ where $n \in \mathbb{N}$.
Solution: Recall that we define $\Gamma(z)$ for $\Re z>-1$ by $\Gamma(z+1) / z$. Then for $\Re z>-1$ we have

$$
\Gamma(z+1)=\frac{\Gamma(z+2)}{z+2}=\frac{(z+1) \Gamma(z+1)}{z+1} \cdot \frac{z}{z}=z \cdot \frac{\Gamma(z+1)}{z}=z \Gamma(z) .
$$

By induction we can extend this to all of \mathbb{C}.

5: Show that $\sum_{p: \text { prime }} \frac{1}{p}$ diverges.
Solution: This is exercise 8 on page 242 and the solution is on page 288. A naive approach would be to take the derivative of both sides of

$$
\zeta(z)=\prod_{p: p r i m e}\left(1-\frac{1}{p^{z}}\right)^{-1}, \Re z>1,
$$

and use the Taylor expansion of $\log (1-t)$ to find, after taking limits as $z \rightarrow 1$,

$$
\log \sum \frac{1}{n}=\sum \frac{1}{p}+\text { some convergent series. }
$$

Since the left hand side diverges, $\sum 1 / p$ should also diverge.

