Due on December 20, 2006, Wednesday, Class time. No late submissions!

MATH 302 Homework 4 - Solutions

1: Show that $\frac{1}{\zeta(z)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{z}}$, for $\Re z>1$, where

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ (-1)^{k} & \text { if } n \text { is a product of } k \text { distinct primes } \\ 0 & \text { otherwise }\end{cases}
$$

Solution: Use the product formula

$$
\frac{1}{\zeta(z)}=\prod_{p}\left(1-\frac{1}{p^{z}}\right), \Re z>1
$$

and recall the elementary fact that every integer is the product of primes. Now expanding the right hand side and carrying out the multiplication give the required formula.

2: Show that $\frac{\zeta^{\prime}(z)}{\zeta(z)}=-\sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^{z}}$, for $\Re z>1$, where

$$
\Lambda(n)= \begin{cases}\ln p & \text { if } n=p^{m} \text { for some prime } p \text { and some } m \in \mathbb{N}^{+} \\ 0 & \text { otherwise }\end{cases}
$$

Solution: Again use the above product formula for $\zeta(z)$. Taking first the logarithm and then differentiating gives the result.

3: Let $f(z)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{z}}$.
(i) Show that the series converges for $\Re z>1$.
(ii) Show that $f(z)=\left(1-\frac{1}{2^{z-1}}\right) \zeta(z)$ for $\Re z>1$.
(iii) Show that $\lim _{z \rightarrow 1} f(z)=\ln 2$.
(iv) Show that $f(z)$ is an entire function.

Solution: This is Exercise 7 on page 242 and the solution is on page 288.

Please send comments to sertoz@bilkent.edu.tr.

