Math 302 Complex Calculus - Final Exam - Solutions

Q-1) Using the residue techniques evaluate the integral $\int_{0}^{\infty} \frac{x}{(x+1)(x+2)(x+4)} d x$.
Solution: Using the technique described on pp 134-136, this integral is equal to

$$
-\sum_{z_{k}=-1,-2,-4} \operatorname{Res}\left(\frac{z}{(z+1)(z+2)(z+4)} \log (z) ; z_{k}\right)
$$

The above residues are $-\pi i / 3, \log (2)+\pi i$ and $-(4 / 3) \log (2)-2 \pi i / 3$ respectively. They add up to $-(1 / 3) \log (2)$ and hence the value of the integral is $(1 / 3) \log (2)$.

Q-2) Show that $e^{z}-z=0$ has infinitely many zeros and that each zero is a simple root.
Solution: Using theorem 16.13 on page 212, if the equation has only finitely many zeros then $e^{z}-z=P(z) e^{Q(z)}$ where $P(z)$ and $Q(z)$ are polynomials. Taking the second derivative of both sides gives first that $Q(z)=z$ and consequently $P(z)=1$. But this leads to the absurd conclusion that $-z=0$ for all z. So the equation must have infinitely many zeros.

Q-3) Let $z_{1}, z_{2}, \ldots, z_{k}, \ldots$ be all the roots of $e^{z}=z$. Let C_{N} be the square in the plane centered at the origin with sides parallel to the axes and each of length $2 \pi N$. Assume that $\lim _{N \rightarrow \infty} \int_{C_{N}} \frac{e^{z}-1}{z^{2}\left(e^{z}-z\right)} d z=0$. Find $\sum_{k=1}^{\infty} \frac{1}{z_{k}^{2}}$.

Solution: Letting $f=\frac{e^{z}-1}{z^{2}\left(e^{z}-z\right)}$, the above limit also converges to
$2 \pi i\left(\sum_{k=1}^{\infty} \operatorname{Res}\left(f ; z_{k}\right)+\operatorname{Res}(f ; 0)\right)$. We find that $\operatorname{Res}\left(f ; z_{k}\right)=1 / z_{k}^{2}$ and $\operatorname{Res}(f ; 0)=1$, yielding $\sum_{k=1}^{\infty} \frac{1}{z_{k}^{2}}=-1$.

Q-4) Find a C-harmonic function $f(x, y)$ in the unit disk whose restriction to the boundary is $x^{2}+y^{3}$.

Solution: Using the real part of z^{2} and the imaginary part of z^{3}, for simplicity, we find that

$$
f(x, y)=\frac{1}{2}\left(x^{2}-y^{2}\right)+\frac{1}{4}\left(y^{3}-3 x^{2} y\right)+\frac{3}{4} y+\frac{1}{2}
$$

is the required harmonic function.

Q-5) Throughout the semester we met two methods to calculate $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. Use one of these methods to find this sum.

Solution: The sum is $\pi^{2} / 6$. One method is to use residue theory, and the other method is to use the infinite product representation of $\sin \pi z$; see pages 141 and 223 respectively.

