Math 302 Complex Calculus - Midterm Exam II - Solutions

Q-1) Find, if it exists, an entire function which vanishes only at the positive primes.
Solution: Since $\sum \frac{1}{p}$ diverges but $\sum \frac{1}{p^{2}}$ converges, where the sum is over all primes, we have that

$$
\prod\left[\left(1-\frac{z}{p}\right) e^{z / p}\right]
$$

is an entire function vanishing at only the primes. Here the product is over all the primes.

Q-2) Find a C-harmonic function in the unit disk with boundary values $x^{3}-x y$.
Solution: \quad Since $z^{3}=\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2}-y^{3}\right)$ is analytic on the unit disk, its real part is harmonic there with boundary values $x^{3}-3 x y^{2}=4 x^{3}-3 x$. Clearly $x y$ is harmonic everywhere. Therefore the required function is

$$
u(x, y)=\frac{1}{4}\left(x^{3}-3 x y^{2}\right)+\frac{3}{4} x-x y .
$$

Q-3) Describe the image of the unit disk under the map $f(z)=\frac{1}{z-\alpha}$, where $\alpha>1$.
Solution: $\quad f$ is a conformal map sending circles to circles. In particular since $\alpha>1$, the unit circle is mapped to another circle with center c_{0} on the real line and with radius r_{0}. By symmetry $f(-1)-f(1)=2 r_{0}$ and $f(-1)+r_{0}=c_{0}$. These give $r_{0}=\frac{1}{\alpha^{2}-1}$ and $c_{0}=\frac{-\alpha}{\alpha^{2}-1}$.

Q-4) Find $\sum_{n=0}^{\infty}\binom{2 n}{n+1} \frac{1}{5^{n}}$. (Here take $\left.\binom{0}{1}=0.\right)$
Solution: Let C be the circle $|z|=1$. Then we have

$$
\begin{aligned}
\sum_{n=0}^{\infty}\binom{2 n}{n+1} \frac{1}{5^{n}} & =\frac{1}{2 \pi i} \sum_{n=0}^{\infty} \int_{C} \frac{(1+z)^{2 n}}{(5 z)^{n}} \frac{d z}{z^{2}} \\
& =\frac{1}{2 \pi i} \int_{C} \sum_{n=0}^{\infty}\left[\frac{(1+z)^{2}}{(5 z)}\right]^{n} \frac{d z}{z^{2}} \\
& =\frac{1}{2 \pi i} \int_{C} f(z) d z
\end{aligned}
$$

where $f(z)=\frac{5 z}{z\left(z^{2}-3 z+1\right)}$. Its poles inside C are $z_{1}=0$ and $z_{2}=(3-\sqrt{5}) / 2$. Sum of the residues at these poles gives the total sum as $(3 \sqrt{5}-5) / 2 \approx 0.8541$. Check that $\left|\frac{(1+z)^{2}}{5 z}\right| \leq \frac{4}{5}<1$ which gives uniform convergence to justify the interchange of infinite sum and the integral.

Q-5) Use residue theory to evaluate $\int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} d x$.
Solution: Let γ be the path $[-R, R]+C_{R}$ where C_{R} is the semicircle of radius R lying in the upper half plane. Integrating the function $f(z)=\frac{z^{2}}{1+z^{4}}$ over this path with $R>1$ and using the residue theorem we find that the value of the integral is $(2 \pi i)\left(\frac{\sqrt{2}-i \sqrt{2}}{8}+\frac{-\sqrt{2}-i \sqrt{2}}{8}\right)=$ $\frac{2 \sqrt{2} \pi}{4}$, where we have added the residues at $z=\exp (\pi i / 4)$ and at $z=\exp (3 \pi i / 4)$. Taking the limit as R goes to infinity and observing that f is an even function we find

$$
\int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} d x=\frac{\sqrt{2} \pi}{4} \approx 1.11
$$

