\qquad

Math 302 Complex Analysis II - Final Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Show that $\sum_{p \text { prime }} \frac{1}{p}$ diverges.

Solution:

We have the identity

$$
\zeta(z)=\frac{1}{\prod_{p: p r i m e}\left(1-\frac{1}{p^{z}}\right)} \text { for } \operatorname{Re} z>1
$$

We also know that: If $\sum_{k=1}^{\infty} z_{k}$ and $\sum_{k=1}^{\infty}\left|z_{k}\right|^{2}$ converge, then $\prod_{k=1}^{\infty}\left(1+z_{k}\right)$ converges. (This is an exercise from the book, and also was a midterm exam question.)
Since $\zeta(z)$ becomes infinite as z approaches 1, the infinite product $\prod_{p: p r i m e}\left(1-\frac{1}{p^{z}}\right)$ diverges to zero.
Take z_{k} as -1 times the k-th prime.
Since the infinite product diverges and $\sum\left|z_{k}\right|^{2}$ converges, we must have $\sum z_{k}$ diverge according to the above fact.

This proves that $\sum_{p \text { prime }} \frac{1}{p}$ diverges.

Q-2) Show that if $\sum_{k=1}^{\infty} z_{k}$ and $\sum_{k=1}^{\infty}\left|z_{k}\right|^{2}$ converge, then $\prod_{k=1}^{\infty}\left(1+z_{k}\right)$ converges.
Solution: (This is Exercise 3 on page 226, solution on page 286, Second Edition.)
The main result we use from complex analysis is that the convergence of $\prod_{k=1}^{\infty}\left(1+z_{k}\right)$ is equivalent to the convergence of $\sum_{k=1}^{\infty} \log \left(1+z_{k}\right)$. Therefore we will try to show the convergence of this infinite sum.
Since $\sum_{k=1}^{\infty} z_{k}$ converges, $\left|z_{k}\right| \leq 1 / 2$ for all large k. So for all large k we have

$$
\begin{aligned}
\left|\log \left(1+z_{k}\right)-z_{k}\right| & =\left|-\frac{z_{k}^{2}}{2}-\frac{z_{k}^{3}}{3}-\cdots\right| \\
& \leq\left|z_{k}\right|^{2}\left(\frac{1}{2}+\frac{\left|z_{k}\right|}{3}+\cdots\right) \\
& \leq\left|z_{k}\right|^{2}\left(\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{2^{2} \cdot 4}+\cdots\right) \\
& <\left|z_{k}\right|^{2}\left(\frac{1}{2}+\frac{1}{2^{2}}+\cdots\right) \\
& =\left|z_{k}\right|^{2}
\end{aligned}
$$

By direct comparison from Calculus, $\sum_{k=1}^{\infty}\left(\log \left(1+z_{k}\right)-z_{k}\right)$ converges absolutely, since $\sum_{k=1}^{\infty}\left|z_{k}\right|^{2}$ converges.

Finally, as the difference of two convergent series

$$
\sum_{k=1}^{\infty} \log \left(1+z_{k}\right)=\sum_{k=1}^{\infty}\left(\log \left(1+z_{k}\right)-z_{k}\right)-\sum_{k=1}^{\infty} z_{k}
$$

converges, which is what we wanted to show.

Q-3) Show that $\sum_{n=0}^{\infty} z^{n!}$ has the unit circle $|z|=1$ as its natural boundary.
Solution: (This is solved in class. It also follows directly from the statement of Theorem 18.5 on page 231.)

Let ω be a k-th root of unity. Then $\omega^{n!}=1$ for every $n \geq k$, so the infinite sum consists of infinitely many ones and diverges. Since the k-th roots of unity for $k=1,2, \ldots$ are dense on the unit circle, the series cannot be analytic on any open set containing any arc of the circle. Hence $|z|=1$ is a natural boundary for the series.

Also note that from Theorem 18.5, $n_{k}=k!$ and $\liminf _{k \rightarrow \infty} \frac{n_{k+1}}{n_{k}}=\infty>1$, so the series has its circle of convergence as a natural boundary. The circle of convergence, from Calculus, is $R=1$.

Q-4) Find a function $f(x, y)$ which is harmonic on $D=\{z \in \mathbb{C}| | z \mid<1\}$ and continuous on $\bar{D}=$ $\left\{z \in \mathbb{C}||z| \leq 1\}\right.$ such that $f(x, y)=x^{3}+x^{2}+x+1$ on $\partial D=\{z \in \mathbb{C}| | z \mid=1\}$.

Solution: (This is a simplified version of Example i on page 207.)
Let u be the real part of z^{3}. Then $u=x^{3}-3 x y^{2}$ and is harmonic everywhere. Restricting u to ∂D we find $\left.u\right|_{\partial D}=4 x^{3}-3 x$, so

$$
\left.\frac{1}{4} u\right|_{\partial D}+\frac{7}{4} x=x^{3}+x
$$

Let v be the real part of z^{2}. Then $v=x^{2}-y^{2}$ and is harmonic everywhere. Restricting v to ∂D we find $\left.v\right|_{\partial D}=2 x^{1}-1$, so

$$
\left.\frac{1}{2} v\right|_{\partial D}+\frac{3}{2}=x^{2}+1 .
$$

So we set

$$
f(x, y)=\frac{1}{4} u+\frac{7}{4} x+\frac{1}{2} v+\frac{3}{2}=\frac{1}{4} x^{3}-\frac{3}{4} x y^{2}+\frac{7}{4} x+\frac{1}{2} x^{2}-\frac{1}{2} y^{2}+\frac{3}{2} .
$$

Q-5) Let H be the upper half plane. Suppose that we have a function f analytic on H and continuous on \bar{H}, where \bar{H} denotes the closure of H. Assume further that $|f(z)|$ is bounded on \bar{H}. Let $M=\sup \{|f(z)| \mid z \in \mathbb{R}\}$

Prove or disprove that $|f(z)| \leq M$ for all $z \in H$.

Solution:

We prove the statement.
If f is constant, there is nothing to prove. Assume then that f is not constant and hence $M>0$.
Dividing f by M if necessary, we may assume without loss of generality that $M=1$. Assume that K is an upper bound for $|f(z)|$ for $z \in \bar{H}$.

Fix any $z_{0} \in H$. We claim that $\left|f\left(z_{0}\right)\right| \leq 1$.
For this purpose, consider the function

$$
h(z)=\frac{f^{n}(z)}{z+i},
$$

where n is a positive integer to be determined later. Clearly $|h(z)| \leq 1$ for all real z. Moreover for all $z \in H$ with $|z|=R>1$, we have $|h(z)| \leq K^{n} /(R-1)$. Choose R large enough such that $K^{n} /(R-1)<1$ and $R>\left|z_{0}\right|$. Consider the set

$$
D_{R}=\{z \in H| | z \mid \leq R\} .
$$

We showed above that $|h(z)| \leq 1$ on the boundary of \bar{D}_{R}, so by maximum modulus principle, $\left|h\left(z_{0}\right)\right| \leq 1$.

Hence for each $z_{0} \in H$, we have

$$
\left|h\left(z_{0}\right)\right|=\left|\frac{f^{n}\left(z_{0}\right)}{z_{0}+i}\right| \leq 1 \quad \text { or } \quad\left|f\left(z_{0}\right)\right| \leq\left|z_{0}+i\right|^{1 / n} .
$$

Taking n large enough, we can get

$$
\left|f\left(z_{0}\right)\right| \leq 1 \text { for all } z_{0} \in H
$$

which proves the claim and finishes the solution of the problem.

