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Math 302 Complex Analysis II – Final Exam – Solutions
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Please do not write anything inside the above boxes!

Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your
work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
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Q-1) Show that
∑

p prime

1

p
diverges.

Solution:

We have the identity

ζ(z) =
1∏

p:prime

(
1− 1

pz

) for Re z > 1.

We also know that: If
∞∑
k=1

zk and
∞∑
k=1

|zk|2 converge, then
∞∏
k=1

(1 + zk) converges. (This is an exercise

from the book, and also was a midterm exam question.)

Since ζ(z) becomes infinite as z approaches 1, the infinite product
∏

p:prime

(
1− 1

pz

)
diverges to zero.

Take zk as −1 times the k-th prime.

Since the infinite product diverges and
∑

|zk|2 converges, we must have
∑

zk diverge according to
the above fact.

This proves that
∑

p prime

1

p
diverges.
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Q-2) Show that if
∞∑
k=1

zk and
∞∑
k=1

|zk|2 converge, then
∞∏
k=1

(1 + zk) converges.

Solution: (This is Exercise 3 on page 226, solution on page 286, Second Edition.)

The main result we use from complex analysis is that the convergence of
∞∏
k=1

(1 + zk) is equivalent

to the convergence of
∞∑
k=1

log(1 + zk). Therefore we will try to show the convergence of this infinite

sum.

Since
∞∑
k=1

zk converges, |zk| ≤ 1/2 for all large k. So for all large k we have

| log(1 + zk)− zk| = | − z2k
2

− z3k
3

− · · · |

≤ |zk|2
(
1

2
+

|zk|
3

+ · · ·
)

≤ |zk|2
(
1

2
+

1

2 · 3
+

1

22 · 4
+ · · ·

)
< |zk|2

(
1

2
+

1

22
+ · · ·

)
= |zk|2.

By direct comparison from Calculus,
∞∑
k=1

(log(1 + zk) − zk) converges absolutely, since
∞∑
k=1

|zk|2

converges.

Finally, as the difference of two convergent series

∞∑
k=1

log(1 + zk) =
∞∑
k=1

(log(1 + zk)− zk)−
∞∑
k=1

zk

converges, which is what we wanted to show.
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Q-3) Show that
∞∑
n=0

zn! has the unit circle |z| = 1 as its natural boundary.

Solution: (This is solved in class. It also follows directly from the statement of Theorem 18.5 on
page 231.)

Let ω be a k-th root of unity. Then ωn! = 1 for every n ≥ k, so the infinite sum consists of infinitely
many ones and diverges. Since the k-th roots of unity for k = 1, 2, . . . are dense on the unit circle, the
series cannot be analytic on any open set containing any arc of the circle. Hence |z| = 1 is a natural
boundary for the series.

Also note that from Theorem 18.5, nk = k! and lim inf
k→∞

nk+1

nk

= ∞ > 1, so the series has its circle of

convergence as a natural boundary. The circle of convergence, from Calculus, is R = 1.
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Q-4) Find a function f(x, y) which is harmonic on D = {z ∈ C | |z| < 1} and continuous on D̄ =
{z ∈ C | |z| ≤ 1} such that f(x, y) = x3 + x2 + x+ 1 on ∂D = {z ∈ C | |z| = 1}.

Solution: (This is a simplified version of Example i on page 207.)

Let u be the real part of z3. Then u = x3 − 3xy2 and is harmonic everywhere. Restricting u to ∂D
we find u|∂D = 4x3 − 3x, so

1

4
u|∂D +

7

4
x = x3 + x.

Let v be the real part of z2. Then v = x2 − y2 and is harmonic everywhere. Restricting v to ∂D we
find v|∂D = 2x1 − 1, so

1

2
v|∂D +

3

2
= x2 + 1.

So we set

f(x, y) =
1

4
u+

7

4
x+

1

2
v +

3

2
=

1

4
x3 − 3

4
xy2 +

7

4
x+

1

2
x2 − 1

2
y2 +

3

2
.
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Q-5) Let H be the upper half plane. Suppose that we have a function f analytic on H and continuous
on H̄ , where H̄ denotes the closure of H . Assume further that |f(z)| is bounded on H̄ . Let
M = sup{|f(z)| | z ∈ R}

Prove or disprove that |f(z)| ≤ M for all z ∈ H .

Solution:

We prove the statement.

If f is constant, there is nothing to prove. Assume then that f is not constant and hence M > 0.

Dividing f by M if necessary, we may assume without loss of generality that M = 1. Assume that
K is an upper bound for |f(z)| for z ∈ H̄ .

Fix any z0 ∈ H . We claim that |f(z0)| ≤ 1.

For this purpose, consider the function

h(z) =
fn(z)

z + i
,

where n is a positive integer to be determined later. Clearly |h(z)| ≤ 1 for all real z. Moreover for
all z ∈ H with |z| = R > 1, we have |h(z)| ≤ Kn/(R − 1). Choose R large enough such that
Kn/(R− 1) < 1 and R > |z0|. Consider the set

DR = {z ∈ H | |z| ≤ R}.

We showed above that |h(z)| ≤ 1 on the boundary of D̄R, so by maximum modulus principle,
|h(z0)| ≤ 1.

Hence for each z0 ∈ H , we have

|h(z0)| =
∣∣∣∣fn(z0)

z0 + i

∣∣∣∣ ≤ 1 or |f(z0)| ≤ |z0 + i|1/n.

Taking n large enough, we can get

|f(z0)| ≤ 1 for all z0 ∈ H,

which proves the claim and finishes the solution of the problem.


