\qquad
\qquad

Math 302 Complex Calculus II - Homework - Solutions

1	2
10	10
10	10

Please do not write anything inside the above boxes!
Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Apply the contour integral method we studies to the evaluation of the sum

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}+n+1}
$$

and write the answer in decimal expansion with at least 8 digits after the decimal point.

Solution:

The zeros of $z^{2}+z+1$ are $z_{1}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$ and $z_{2}=-\frac{1}{2}-i \frac{\sqrt{3}}{2}$. Our method shows that

$$
\sum_{\substack{n=-\infty \\ n \neq z_{k}}}^{\infty} \frac{1}{n^{2}+n+1}=-\sum_{k=1}^{2} \operatorname{Res}\left(\frac{\pi \cot \pi z}{z^{2}+z+1}, z_{k}\right)=: \alpha_{0} .
$$

Now

$$
\sum_{\substack{n=-\infty \\ n \neq z_{k}}}^{\infty} \frac{1}{n^{2}+n+1}=\sum_{-\infty<n \leq-1} \frac{1}{n^{2}+n+1}+\sum_{n=0}^{\infty} \frac{1}{n^{2}+n+1}
$$

and the first sum on the right hand side becomes $\sum_{n=0}^{\infty} \frac{1}{n^{2}+n+1}$ when n is replaced by $-n-1$. Thus we have

$$
\sum_{\substack{n=-\infty \\ n \neq z_{k}}}^{\infty} \frac{1}{n^{2}+n+1}=2 \sum_{n=0}^{\infty} \frac{1}{n^{2}+n+1}=\alpha_{0}
$$

and

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}+n+1}=\frac{\alpha_{0}}{2}=1.798147281 \ldots
$$

Note: $\operatorname{Res}\left(\frac{\pi \cot \pi z}{z^{2}+z+1}, z\right)=-\frac{\sqrt{3} \pi}{3} \tanh \left(\frac{\sqrt{3} \pi}{2}\right)$ for $z=-\frac{1}{2} \pm \frac{\sqrt{3}}{2}$.

Q-2) Apply the contour integral method we studies to the evaluation of the sum

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}+4 n^{3}+6 n^{2}+4 n}
$$

and write the answer in decimal expansion with at least 8 digits after the decimal point.

Solution:

For ease of notation we set $g(z)=z^{4}+4 z^{3}+6 z^{2}+4 z$. Its zeros are $0,-2,-1+i,-1-i$. Our method gives

$$
\sum_{\substack{n=-\infty \\ n \neq 0,-2,-1+i,-1-i}}^{\infty} \frac{1}{g(n)}=-\sum_{z=0,-2,-1+i,-1-i} \operatorname{Res}\left(\frac{\pi \cot \pi z}{g(z)}, z\right)=: \alpha_{0}
$$

By replacing n by $-n-1$, we get

$$
\sum_{\substack{n=-\infty \\ n \neq 0,-2,-1+i,-1-i}}^{\infty} \frac{1}{g(n)}=\sum_{\substack{n=-\infty \\ n \neq \pm 1}}^{\infty} \frac{1}{n^{4}-1}=-1+2 \sum_{n=2}^{\infty} \frac{1}{n^{4}-1}=\alpha_{0}
$$

Hence

$$
\sum_{n=2}^{\infty} \frac{1}{n^{4}-1}=\frac{\alpha_{0}+1}{2}=0.086662976 \ldots
$$

Note:

$$
\begin{gathered}
\operatorname{Res}\left(\frac{\pi \cot \pi z}{z^{4}+4 z^{3}+6 z^{2}+4 z}, z\right)=-\frac{3}{8} \text { for } z=0,-2, \\
\operatorname{Res}\left(\frac{\pi \cot \pi z}{z^{4}+4 z^{3}+6 z^{2}+4 z}, z\right)=\frac{\pi}{2} \operatorname{coth}(\pi z) \text { for } z=-1 \pm i,
\end{gathered}
$$

and

$$
\alpha_{0}=-0.826674048 \ldots
$$

