\qquad

Math 302 Complex Calculus II - Homework - Solutions

3	4
10	10
10	10

Please do not write anything inside the above boxes!
Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-3) Classify all the automorphisms of the first quadrant

Solution:

Let $f(z)=z^{2}$ with inverse $f^{-1}(z)=\sqrt{z}$ where we use the principal branch for the square root function. Then f is a conformal isomorphism of the first quadrant with the upper half plane and any automorphism of the first quadrant is of the form $f^{-1} \circ \phi \circ f$ where ϕ is an automorphism of the upper half plane.

Any automorphism of the upper half plane is of the form

$$
\phi(z)=\frac{a z+b}{c z+d} \text { where } a, b, c, d \text { are real and } a d-b c>0 .
$$

Hence any automorphism of the first quadrant is of the form

$$
\left(f^{-1} \circ \phi \circ f\right)(z)=\sqrt{\frac{a z^{2}+b}{c z^{2}+d}} \text { where } a, b, c, d \text { are real and } a d-b c>0 .
$$

Q-4) This exercise aims to complete the proof of a theorem we did in class.
Fix $\alpha \in \mathbb{C}$ with $|\alpha|<1$. Define

$$
h(z)=\left(\frac{z-i}{z+i}\right)^{-1} \circ\left(\frac{z-\alpha}{1-\bar{\alpha} z}\right) \circ\left(\frac{z-i}{z+i}\right) .
$$

Show that

$$
h(z)=\frac{a z+b}{c z+d} \text { with } a, b, c, d \in \mathbb{R} \text { and } a d-b c>0
$$

Solution:

Composition of Mobius transformations corresponds to multiplication of their coefficient matrices.
Let $\frac{z-i}{z+i}$ be represented by the matrix

$$
A=\left[\begin{array}{cc}
1 & -i \\
1 & i
\end{array}\right]
$$

and $\frac{z-\alpha}{1-\bar{\alpha} z}$ be represented by the matrix

$$
B=\left[\begin{array}{cc}
1 & -x-i y \\
-x+i y & 1
\end{array}\right]
$$

where $\alpha=x+i y$ with $x^{2}+y^{2}<1$.
Then $\left(\frac{z-i}{z+i}\right)^{-1} \circ\left(\frac{z-\alpha}{1-\bar{\alpha} z}\right) \circ\left(\frac{z-i}{z+i}\right)$ is represented by the matrix

$$
C=\left[\begin{array}{cc}
1-x & y \\
y & 1+x
\end{array}\right]
$$

where $\operatorname{det} C=1-x^{2}-y^{2}>0$ as claimed.

